Пусть JH искомое расстояние. JH перпендикулярно BC. Поскольку JA перпендикулярна плоскости,то AH проекция перпендикуляра JH на плоскость. Откуда по теореме о 3 перпендикулярах: выходит что AH перпендикулярна BC,то есть высота треугольника ABC. Меньший угол всегда лежит против меньшей стороны ,то есть напротив стороны BC=27 Найдем площадь треугольника по формуле Герона: p=(51+30+27)/2=54 S=sqrt(54*3*24*27)=324 Откуда : раз S=AH*BC/2 AH=324*2/27=24 И наконец по теореме Пифагора: JH^2=10^2+24^2=676=26^2 JH=26 ответ: JH=26
Нужно делить на СООТВЕТСТВУЮЩУЮ сторону треугольника. Если дано, что треугольники АВС и ОРТ, подобны, то вначале надо определить какие стороны являются соответствующими (и то же самое с углами: соответствующие углы у подобных треугольников равны). Как правило в учебниках, при записи подобных треугольников соответствие определяется по положению буквы в записи треугольника. Хотя, в новых учебниках это явно не сказано. Например, если сказано, что треугольники АВС и ОРТ подобны, то подразумевается, что угол А равен углу О, угол В равен Р, и С равен Т. И тогда стороне АВ соответствует сторона ОР, стороне ВС соответствует РТ и стороне АС соответствует OТ. Т.е. при такой записи, будет AB/OP=BC/PT=AC/OT. И в вашей задаче, если AB=8, то чтобы определить коэффициент подобия, надо знать длину именно ОР. И если сказано, что она 4, то да, треугольник ABC подобен треугольнику ОРТ с коэффициентом подобия 2.
Поскольку JA перпендикулярна плоскости,то
AH проекция перпендикуляра JH на плоскость.
Откуда по теореме о 3 перпендикулярах: выходит что AH перпендикулярна BC,то есть высота треугольника ABC.
Меньший угол всегда лежит против меньшей стороны ,то есть напротив стороны BC=27
Найдем площадь треугольника по формуле Герона:
p=(51+30+27)/2=54
S=sqrt(54*3*24*27)=324
Откуда : раз S=AH*BC/2
AH=324*2/27=24
И наконец по теореме Пифагора:
JH^2=10^2+24^2=676=26^2
JH=26 ответ: JH=26