1)Площадь боковой поверхности цилиндра находится по формуле 2ПRH,где 2ПR-длина окружности основания,H-высота цилиндра,подставляем всё известное: 1*H=2 значит H=2 2)Радиус основания равен половине стороны треугольника=10/2=5 высота равностореннего треугольника имеет формулу:(а*корень из 3)/2 подставляем:(10*корень из 3)/2=5*корень из 3 3) осевое сечение цилиндра-прямоугольник если диагональ прямоугольника =20 и угол 60,то нижняя сторона прямоугольника =10(лежит на против угла в 30 градусов),вторая сторона прямоугольника равна по теореме Пифагора корень из 300=10*корень из 3 10-это диаметр цилиндра,радиус тогда=5 10*корень из 3-высота цилиндра подставляем в формулу боковой поверхности:2*п*5*3*корень из 3=30П*корень из 3
Имеем углы KAB и MCB. Для начала нужно доказать что эти углы равны, а если эти углы будут равны, то и стороны этих углов тоже будут равны. Первое свойство равнобедренного треугольника гласит: углы при основании равнобедренного треугольника равны. Проведём медиану BD, которая будет делить данный треугольник на равные части. Т.к. углы BAD и BCD равны, то углы KAB и BAD, будут вертикальные, а значит равны. Углы MCB и BCD тоже будут вертикальные, а значит тоже равны между собой. А т.к. углы при основании равны и оба из них имеют равные прилежащие углы, то и углы KAB и MCB, тоже равны!
значит H=2
2)Радиус основания равен половине стороны треугольника=10/2=5
высота равностореннего треугольника имеет формулу:(а*корень из 3)/2
подставляем:(10*корень из 3)/2=5*корень из 3
3) осевое сечение цилиндра-прямоугольник
если диагональ прямоугольника =20 и угол 60,то нижняя сторона прямоугольника =10(лежит на против угла в 30 градусов),вторая сторона прямоугольника равна по теореме Пифагора корень из 300=10*корень из 3
10-это диаметр цилиндра,радиус тогда=5
10*корень из 3-высота цилиндра
подставляем в формулу боковой поверхности:2*п*5*3*корень из 3=30П*корень из 3
AK = CM
Объяснение:
Имеем углы KAB и MCB. Для начала нужно доказать что эти углы равны, а если эти углы будут равны, то и стороны этих углов тоже будут равны. Первое свойство равнобедренного треугольника гласит: углы при основании равнобедренного треугольника равны. Проведём медиану BD, которая будет делить данный треугольник на равные части. Т.к. углы BAD и BCD равны, то углы KAB и BAD, будут вертикальные, а значит равны. Углы MCB и BCD тоже будут вертикальные, а значит тоже равны между собой. А т.к. углы при основании равны и оба из них имеют равные прилежащие углы, то и углы KAB и MCB, тоже равны!