Ты понимаешь, что для начала стоит сказать , что в паскале несколько видов повторения бывает. В звисимости от видов и разные механизмы. Например цикл пока или цикл с предусловием он называется: while <условие> do begin <тело цикла> end; до тех пора выполныется условие выполняем цикл.
Цикл с постусловием: repeat <тело цикла> until <условие выхода> повторять какие то действия до тех пор пока не это число указанно например не попадет в условие выхода
В шестеричной системе алфавит состоит из цифр 0,1,...5. Четырехразрядное число по условиям задания (1) и (2) имеет вид aabb, где a=1,2,...5, b=0,1,...5. В развернутой записи число имеет вид a×6³+a×6²+b×6+b×1 = 6²×a(6+1)+b(6+1) = 7(36a+b) При этом по условию (3) можно записать, что k² = 7(36a+b) Чтобы число 7(36a+b) было полным квадратом, 36a+b должно быть кратно 7, а остаток от деления (36a+b) на 7 также должен быть полным квадратом. Получаем, что 36a+b = 7m² Минимальное значение 36a+b равно 36×1+0 = 36, следовательно m>2 (при m=2 получим 7×4=28, что меньше 36). При m=3 получаем 36a+b = 63 и при a∈[1;5], b∉[0;5] решений нет. При m=4 получаем 36a+b = 112 и находим a=3, b=4 - есть решение! При m=5 получаем 36a+b = 175 и при a∈[1;5], b∉[0;5] решений нет. При m=6 получаем 36a+b = 175 и получаем, что a=7, а это недопустимо. Дальше смысла проверять нет. Итак, a=3, b=4, число 3344₆ = 7×(36×3+4) = 784₁₀ = 28²
Цикл с постусловием: repeat <тело цикла> until <условие выхода> повторять какие то действия до тех пор пока не это число указанно например не попадет в условие выхода
И еще и еще об этом можно много говорить
Четырехразрядное число по условиям задания (1) и (2) имеет вид aabb,
где a=1,2,...5, b=0,1,...5.
В развернутой записи число имеет вид
a×6³+a×6²+b×6+b×1 = 6²×a(6+1)+b(6+1) = 7(36a+b)
При этом по условию (3) можно записать, что k² = 7(36a+b)
Чтобы число 7(36a+b) было полным квадратом, 36a+b должно быть кратно 7, а остаток от деления (36a+b) на 7 также должен быть полным квадратом.
Получаем, что 36a+b = 7m²
Минимальное значение 36a+b равно 36×1+0 = 36, следовательно m>2 (при m=2 получим 7×4=28, что меньше 36).
При m=3 получаем 36a+b = 63 и при a∈[1;5], b∉[0;5] решений нет.
При m=4 получаем 36a+b = 112 и находим a=3, b=4 - есть решение!
При m=5 получаем 36a+b = 175 и при a∈[1;5], b∉[0;5] решений нет.
При m=6 получаем 36a+b = 175 и получаем, что a=7, а это недопустимо. Дальше смысла проверять нет.
Итак, a=3, b=4, число 3344₆ = 7×(36×3+4) = 784₁₀ = 28²
ответ: 3344