Формула среднего геометрического двух чисел: n=√х1*х2 Значит, среднее геометрическое двух самых маленьких чисел: 4=√х1*х2, 16=х1*х2 Среднее геометрическое двух самых больших чисел равно 15: 15=√х1*х2, 225=х1*х2
Разложим 16 на множители: 1*16=16 2*8=16 16 – не подходи т. .к. если наибольшие множители будут составлять как минимум 17 и 18, тогда 17*18=306>225 2,8 – наименьшие числа.
Разложим 225 на множители, учитывая что одно из наибольших чисел не может быть меньше (либо равно) 8: 225==3*75=5*45=9*25=15*15 3,5<8, 15 – два повторяющихся числа. 9, 25 – наибольшие числа.
Сумма чисел равна: 2+8+9+25=44 ответ: сумма чисел 44.
53 + 18 = ( 50 + 3) + ( 10 + 8) = ( 50 + 10) + ( 3 + 8) = 60 + 11 = 71
53 + 28 = ( 50 + 3) + ( 20 + 8) = ( 50 + 20) + ( 3 + 8) = 70 + 11 = 81
53 + 38 = ( 50 + 3) + ( 30 + 8) = ( 50 + 30) + ( 3 + 8) = 80 + 11 = 91
вычислив первый пример, можем заметить, что в каждом следующем, второе слагаемое на десяток больше, не вычисляя можно написать ответы))
73 + 17 = ( 70 + 3) + ( 10 + 7) = (70 + 10) + ( 3 + 7) = 80 + 10 = 90
73 + 19 = ( 70 + 3) + ( 10 + 9) = ( 70 + 10) + ( 3 + 9) = 80 + 12 = 92
73 + 18 = ( 70 + 3) + ( 10 + 8) = ( 70 + 10) + ( 3 + 8) = 80 + 11 = 91
55 + 29 = ( 50 + 5) + ( 20 + 9) = ( 50 + 20) + ( 5 + 9) = 70 + 14 = 84
46 + 38 = ( 40 + 6) + ( 30 + 8) = ( 40 + 30) + (6 + 8) = 70 + 14 = 84
37 + 47 = ( 30 + 7) + ( 40 + 7) = ( 30 + 40) + ( 7 + 7) = 70 + 14 = 84
Значит, среднее геометрическое двух самых маленьких чисел: 4=√х1*х2,
16=х1*х2
Среднее геометрическое двух самых больших чисел равно 15: 15=√х1*х2,
225=х1*х2
Разложим 16 на множители:
1*16=16 2*8=16 16 – не подходи т. .к. если наибольшие множители будут составлять как минимум 17 и 18, тогда 17*18=306>225
2,8 – наименьшие числа.
Разложим 225 на множители, учитывая что одно из наибольших чисел не может быть меньше (либо равно) 8: 225==3*75=5*45=9*25=15*15
3,5<8,
15 – два повторяющихся числа.
9, 25 – наибольшие числа.
Сумма чисел равна: 2+8+9+25=44
ответ: сумма чисел 44.