1. Формула для объёма всего "пирамидообразного" V1 = 1/3 * S1 * h1 Формула для объема призмы V2 = S2 h2.
Пусть в основании квадрат с радиусом 2а. Тогда S1 = pi * a^2 S2 = 4a^2 h2 = h1 V2 / V1 = 3 S2 h2 / (S1 h1) = 3 * 4 / pi = 12 / pi
2. Если линейные размеры увеличить в k раз, площади увеличиваются в k^2 раз, объемы - в k^3 раз. Кол-во краски пропорционально площади поверхности.
Понадобится 100 * 3^2 = 900 г краски
3) Радиусы равны 3 и 5. В осевом сечении - равнобедренная трапеция с основаниями 6 и 10, в которую можно вписать окружность. Окружность можно вписать, если суммы длин противоположных сторон равны. Тогда бок. сторона = образующая = (6 + 10) / 2 = 8 S = pi (r1 + r2) l = pi (3 + 5) * 8 = 64pi
1)6 1/8-1,75=6 1/8-1 75/100=6 1/8-1 3/4=49/8-7/4=35/8
2)5 6/11-3 5/10=5 6/11-3 1/2=61/11-7/2=(122-77)/22=45/22
3)45/22*2 1/5=45/22*11/5=9/2=4 1/2
4)9-4 1/2=4 1/2
5)35/8:9/2=35/8*2/9=35/36
6)35/36*1 2/7=35/36*9/7=5/4=1 1/4
(3 5/6-1 2/15)*5/9+((1/20+0,24)*8 1/3-1 1/6)*2=4
1)3 5/6-1 2/15=23/6-17/15=(115-34)/30=81/30=2 7/10
2)2 7/10*5/9=27/10*5/9=3/2=1 1/2
3)1/20+0,24=1/20+24/100=5/100+24/100=29/100
4)29/100*8 1/3=29/100*25/3=29/12
5)29/12-1 1/6=29/12-7/6=15/12=1 1/4
6)5/4*2=10/4=2 1/2
7)1 1/2+2 1/2=4
Формула для объема призмы V2 = S2 h2.
Пусть в основании квадрат с радиусом 2а. Тогда
S1 = pi * a^2
S2 = 4a^2
h2 = h1
V2 / V1 = 3 S2 h2 / (S1 h1) = 3 * 4 / pi = 12 / pi
2. Если линейные размеры увеличить в k раз, площади увеличиваются в k^2 раз, объемы - в k^3 раз.
Кол-во краски пропорционально площади поверхности.
Понадобится 100 * 3^2 = 900 г краски
3) Радиусы равны 3 и 5.
В осевом сечении - равнобедренная трапеция с основаниями 6 и 10, в которую можно вписать окружность. Окружность можно вписать, если суммы длин противоположных сторон равны. Тогда бок. сторона = образующая = (6 + 10) / 2 = 8
S = pi (r1 + r2) l = pi (3 + 5) * 8 = 64pi