В данной задаче фиксики заняли неудобные ячейки на зарядном устройстве, так как в некоторых рядах и столбцах сразу по два фиксика. Хотя кажется, что раз осталось 20 свободных ячеек, то теоретически можно зарядить 10 телефонов (20:2=10). Придется поломать голову. Начнем с верхнего ряда. Понятно, что если мы хотим не оставлять пустые ячейки, нужно идти слева направо 2 телефона по горизонтали и один вертикально в правом столбце. Рассуждая таким образом можно прийти к решению:
1 - горизонтальный телефон;
2 - горизонтальный телефон;
3 - вертикальный телефон;
4 - вертикальный телефон;
5 - вертикальный телефон;
6 - вертикальный телефон;
7 - вертикальный телефон;
8 - горизонтальный телефон.
9 - вертикальный телефон;
10 - горизонтальный телефон.
1.Гоняют по кольцу. Длинна кольца 350 км. Старт и финиш в одной точке. Длинна этапа эстафеты - 75 км. Что ищем: наименьшее количество этапов. 2. А может 350 км разделится на 75 км, так что бы получилось число без остатка (что бы старт и финиш совпали) . Проверяем: 350:75=4,666... Нет не получилось. Тогда следующая точка совпадения будет - 2 круга, а это? 3. Два круга = 2 х 350км = 700 км. Может теперь разделится без остатка? Проверяем: 700:75=9,333... Нет, опять не получилось. Тогда следующая точка совпадения будет - 3 круга, а это? 4. Три круга = 3 х 350км = 1050 км. Снова ищем ровное число этапов. Проверяем: 1050:75=14. Свершилось! Ура!! ! ответ: наименьшее количество этапов 14(четырнадцать) , обоснованием ответа является решение-рассуждение.
1 - горизонтальный телефон;
2 - горизонтальный телефон;
3 - вертикальный телефон;
4 - вертикальный телефон;
5 - вертикальный телефон;
6 - вертикальный телефон;
7 - вертикальный телефон;
8 - горизонтальный телефон.
9 - вертикальный телефон;
10 - горизонтальный телефон.
1.Гоняют по кольцу. Длинна кольца 350 км. Старт и финиш в одной точке. Длинна этапа эстафеты - 75 км. Что ищем: наименьшее количество этапов. 2. А может 350 км разделится на 75 км, так что бы получилось число без остатка (что бы старт и финиш совпали) . Проверяем: 350:75=4,666... Нет не получилось. Тогда следующая точка совпадения будет - 2 круга, а это? 3. Два круга = 2 х 350км = 700 км. Может теперь разделится без остатка? Проверяем: 700:75=9,333... Нет, опять не получилось. Тогда следующая точка совпадения будет - 3 круга, а это? 4. Три круга = 3 х 350км = 1050 км. Снова ищем ровное число этапов. Проверяем: 1050:75=14. Свершилось! Ура!! ! ответ: наименьшее количество этапов 14(четырнадцать) , обоснованием ответа является решение-рассуждение.