Квадратное уравнение - уравнение вида ax^2+bx+c=0, где a,b,c - числа; x - переменная, причем а не=0; решить квадратное уравнение значит найти множесво его корней(у квадратного уравнения может быть максимум 2 корня); уравнение вида ax^2+bx=0(где c=0) и ax^2+c=0(где b=0) - называются неполными квадратными, решаются так:
1) выносим x за скобку: x(ax+b)=0; x=0; - первый корень ax+b=0; x=-b/a - формула для 2 корня уравнения,когда c=0; 2) ax^2+c=0; x^2=-c/a; x1=-sqrt(-c/a); x2=sqrt(-c/a) - для корня если b=0;
а если b=0 и c=0, то ax^2=0; x=0 - всегда будет 0;
уравнение вида ax^2+bx+c=0 - называется полным квадратным уравнением и решается через дискреминант: D=b^2-4*a*c, где a,b,c - соответствуюшие коэффиценты из уравнения; (если D>0 - уравнение имеет 2 корня, если D=0 - 1 корень, если D<0- не имеет корней) x1=(-b+sqrt(D))/(2*a) x2=(-b-sqrt(D))/(2*a) - формула корней;
прмеры: 1) 2x^2-8x=0; здесь a=2; b=-8, значит x1=0; x2=-(-8)/2=4, - 2 корня (-4) и 0
2) x^2-4=0; здесть a=1; c=-4; x1=-sqrt(-(-4)/1)=-2; x2=2; - тоже 2 корня: (2) и (-2)
3) x^2-2x-3=0; здесь a=1; b=-2; c=-3; значит: D=(-2)^2-4*1*(-3)=4+12=16; x1=-(-2)+sqrt(16)/2*1=2+4/2=3; x2=-(-2)-sqrt(16)/2*1=2-4/2=-1;
примечание: ax^2+bx+c - называется квадратным трехчленом, и его можно разложить на множители; для этого его надо приравнять к 0, и решить квадратное уравнения; вот формула: ax^2+bx+c=a(x-x1)(x-x2), где a - коэффициент перед x^2; x1,x2- корни этого уравнения; (sqrt- квадратный корень)
Докажем методом мат. индукции. Пусть имеется 2х точек. Требуется доказать, что найдётся круг, содержащий не менее х из них. 1) Начальное значение х=2, то есть 4 точки. По условию "среди каждых трех из них найдутся ДВЕ точки, расстояние между которыми меньше 1см." Значит круг, содержащий ДВЕ точки существует. 2) Предположим, что условие выполняется при натуральном х, и докажем его для (х+1). Теперь точек сперва было 2х - из них х в требуемом круге, а стало 2(х+1), то есть добавилось две. Рассмотрим эти две точки и третью из круга. Из условия ""среди каждых трех из них найдутся ДВЕ..." хотя бы одна из двух добавленных точек должна войти в круг. Таким образом в круге будет содержаться (х+1) точка, что и требовалось доказать. 3) Мы доказали теорему для любого х не меньше 2. Поэтому она справедлива и для х=1008, то есть 2016 точек.
решить квадратное уравнение значит найти множесво его корней(у квадратного уравнения может быть максимум 2 корня); уравнение вида ax^2+bx=0(где c=0) и ax^2+c=0(где b=0) - называются неполными квадратными, решаются так:
1) выносим x за скобку: x(ax+b)=0;
x=0; - первый корень
ax+b=0; x=-b/a - формула для 2 корня уравнения,когда c=0;
2) ax^2+c=0; x^2=-c/a; x1=-sqrt(-c/a); x2=sqrt(-c/a) - для корня если b=0;
а если b=0 и c=0, то ax^2=0; x=0 - всегда будет 0;
уравнение вида ax^2+bx+c=0 - называется полным квадратным уравнением и решается через дискреминант:
D=b^2-4*a*c, где a,b,c - соответствуюшие коэффиценты из уравнения; (если D>0 - уравнение имеет 2 корня, если D=0 - 1 корень, если D<0- не имеет корней)
x1=(-b+sqrt(D))/(2*a)
x2=(-b-sqrt(D))/(2*a) - формула корней;
прмеры:
1) 2x^2-8x=0; здесь a=2; b=-8, значит x1=0; x2=-(-8)/2=4, - 2 корня (-4) и 0
2) x^2-4=0; здесть a=1; c=-4; x1=-sqrt(-(-4)/1)=-2;
x2=2; - тоже 2 корня: (2) и (-2)
3) x^2-2x-3=0; здесь a=1; b=-2; c=-3; значит:
D=(-2)^2-4*1*(-3)=4+12=16;
x1=-(-2)+sqrt(16)/2*1=2+4/2=3;
x2=-(-2)-sqrt(16)/2*1=2-4/2=-1;
примечание:
ax^2+bx+c - называется квадратным трехчленом, и его можно разложить на множители; для этого его надо приравнять к 0, и решить квадратное уравнения; вот формула: ax^2+bx+c=a(x-x1)(x-x2), где a - коэффициент перед x^2; x1,x2- корни этого уравнения;
(sqrt- квадратный корень)
Пусть имеется 2х точек. Требуется доказать, что найдётся круг, содержащий не менее х из них.
1) Начальное значение х=2, то есть 4 точки. По условию "среди каждых трех из них найдутся ДВЕ точки, расстояние между которыми меньше 1см." Значит круг, содержащий ДВЕ точки существует.
2) Предположим, что условие выполняется при натуральном х, и докажем его для (х+1). Теперь точек сперва было 2х - из них х в требуемом круге, а стало 2(х+1), то есть добавилось две. Рассмотрим эти две точки и третью из круга. Из условия ""среди каждых трех из них найдутся ДВЕ..." хотя бы одна из двух добавленных точек должна войти в круг. Таким образом в круге будет содержаться (х+1) точка, что и требовалось доказать.
3) Мы доказали теорему для любого х не меньше 2. Поэтому она справедлива и для х=1008, то есть 2016 точек.