Брокер купил несколько акций ОАО "Напрасный труд". рассчитывая получить прибыль 280000 рублей, продавая акции по 15000 рублей. Но ситуация на рынке ценных бумаг сложилась так, что брокер продал акции по 8500 рублей, и получил прибыль 52500 рублей. Какую сумму заплатил брокер за акции? С подробным решением.
Задачка довольно не простая, поэтому решение будет длинным.
Просто хочу сказать что все что я решал до этого привело меня в полное безумие. И этим решением является текст данный мной ниже.
Так как гипотенуза равна и один из катетов например AC = x, то катет AB =
Проводим биссектрисы из двух остроугольных вершин.
Их пересечение создает треугольник ВDC:
Угол ∠ABC =
Значит ∠DBC =
Угол ∠BCA =
Значит ∠DCA = .
Напишем уравнение прямой BC
где BA = , AC = x
Теперь, зная что центр вписанной окружности находится на одинаковом расстоянии от сторон треугольника, напишем систему равенств.
Теперь ищем такое значение Dx, при котором Dx = расстоянию от точки D то прямой BC.
Расстояние от точки D то прямой BC будет равно по формуле
Составим систему равенств
Не решайте такА теперь приступим к настоящему :
Так как гипотенуза равна и один из катетов например AC = x, то катет AB =
Проводим биссектрисы из прямой и остроугольной вершины.
Их пересечение создает треугольник ADC:
Угол ∠BAC = 90°
Значит ∠DAC = 45°
Угол ∠BCA =
Значит ∠DCA = .
Найдем значение x1 при котором прямые AD и DC пересекаются:
x1 = , где k1 и b1 коэффициенты прямой AD а k2 и b2 коэффициенты прямой DC.
Площадь треугольника BDC равно .
А радиус окружности равен
Подставим все известные нам величины.
Получился полный капец.
Я сам в шоке.
Я не просто в шоке, а в полном отчаянии, потому что нам сейчас надо найти производную от этого.
Самое обидное то, что я знаю какой будет ответ, а именно
потому что максимальный радиус будет при равных катетах прямоугольного треугольника.
Но обоснование ответа будет мне стоить похоже 10 лет жизни.
прощения. Я не смог вам с решением данной задачи
1) уравнение стороны АВ.
Найдем уравнение АВ, проходящей через две заданные точки A и В
\begin{gathered}\displaystyle \dfrac{x-x_1}{x_2-x_1}= \dfrac{y-y_1}{y_2-y_1} \\ \\ \\ \frac{x+2}{1+2}= \frac{y+3}{6+3} \\ \\ \boxed{y-3x-3=0} \end{gathered}
x
2
−x
1
x−x
1
=
y
2
−y
1
y−y
1
1+2
x+2
=
6+3
y+3
y−3x−3=0
2) Уравнение высоты CH
\dfrac{x-x_0}{A}= \dfrac{y-y_0}{B}
A
x−x
0
=
B
y−y
0
, где (А;B) - направляющий вектор перпендикулярной прямой АВ.
(-3;1) - направляющий вектор.
\begin{gathered}\displaystyle \frac{x-6}{-3} = \frac{y-1}{1}\\ \\ \boxed{3y+x-9=0} \end{gathered}
−3
x−6
=
1
y−1
3y+x−9=0
3) Уравнение медианы АМ.
Координаты точки М найдем по формулам деления отрезка пополам
x= \frac{1+6}{2} = \frac{7}{2} ;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,y= \frac{6+1}{2} = \frac{7}{2}x=
2
1+6
=
2
7
;y=
2
6+1
=
2
7
M(\frac{7}{2} ;\frac{7}{2} )M(
2
7
;
2
7
) - точка М.
Уравнение медианы АМ будем искать по формуле для уравнение прямой, проходящей через две заданные точки.
\begin{gathered} \dfrac{x+2}{\frac{7}{2} +3} = \dfrac{y+3}{\frac{7}{2} +3} \\ \\ \\ \boxed{11y-13x+7=0}\end{gathered}
2
7
+3
x+2
=
2
7
+3
y+3
11y−13x+7=0
4) Точку пересечения медианы АМ и высоты СН
\begin{gathered}\displaystyle \left \{ {{3y+x-9=0} \atop {11y-13x+7=0}} \right. \Rightarrow \left \{ {{x=9-3y} \atop {11y-13(9-3y)+7=0}} \right. \\ \\11y-117+39y+7=0\\ \\ 50y=110\\ y=2.2\\ x=2.4\end{gathered}
{
11y−13x+7=0
3y+x−9=0
⇒{
11y−13(9−3y)+7=0
x=9−3y
11y−117+39y+7=0
50y=110
y=2.2
x=2.4
N(2.4;2.2) - точка пересечения