Обозначим искомый интеграл через I. Пусть I1, I2, I3 - интегралы соответственно по прямым АС, ВС и ВА, тогда I=I1+I2+I3.
1) найдём I1. Пишем уравнение прямой АС: y=2-1/2*x. Отсюда y²=1/4*x²-2*x+4, dy=-1/2*dx. Тогда I1=F1(2)-F1(0)+F2(2)-F2(0), где F1(x)=∫dx/(2-1/2*x) и F2(x)=∫1/2*dx/(1/4*x²-2*x+4). Умножая числитель и знаменатель подынтегрального выражения для F1(x) на 2, а для F2(x) - на 4, получим: F1(x)=2*∫dx/(4-x)=-2*∫d(x-4)/(x-4), F2(x)=2*∫x*dx/(x²-8*x+16)=2*∫x*dx/(x-4)². Полагая в выражении для F2(x) x-4=t и учитывая, что dx=dt, получим I1=F1(2)-F1(0)+F(-2)-F(-4), где F(t)=2*∫(t+4)*dt/t². Отсюда F1(x)=-2*ln/x-4/, F(t)=2*ln/t/-8/t и тогда I1=-2*ln/-2/+2*ln/-4/+2*ln/-2/+8/2-2*ln/-4/-8/4=4-2=2.
2) найдём I2. Уравнение прямой ВС имеет вид: x=2. Так как x=const, то dx=0 и тогда I2=F(2)-F(1), где F(y)=-∫2*dy/y²=2/y. Отсюда I2=2/2-2/1=-1.
3) найдём I3. Уравнение прямой АС имеет вид: y=2. Так как y=const, то dy=0 и тогда I3=F(0)-F(2), где F(x)=∫dx/2=1/2*x. Отсюда I3=0-1=-1.
Отсюда I=2+(-1)+(-1)=0. Это и следовало ожидать, так как криволинейный интеграл по замкнутому контуру В ДАННОМ СЛУЧАЕ должен быть равным нулю, потому что подынтегральное выражение представляет собой полный дифференциал du некоторой функции u(x,y). В самом деле, так как d/dy(1/y)=-1/y²=d/dx(-x/y²)=-1/y², то подынтегральное выражение действительно есть полный дифференциал.
ответ: 0.
Пошаговое объяснение:
Обозначим искомый интеграл через I. Пусть I1, I2, I3 - интегралы соответственно по прямым АС, ВС и ВА, тогда I=I1+I2+I3.
1) найдём I1. Пишем уравнение прямой АС: y=2-1/2*x. Отсюда y²=1/4*x²-2*x+4, dy=-1/2*dx. Тогда I1=F1(2)-F1(0)+F2(2)-F2(0), где F1(x)=∫dx/(2-1/2*x) и F2(x)=∫1/2*dx/(1/4*x²-2*x+4). Умножая числитель и знаменатель подынтегрального выражения для F1(x) на 2, а для F2(x) - на 4, получим: F1(x)=2*∫dx/(4-x)=-2*∫d(x-4)/(x-4), F2(x)=2*∫x*dx/(x²-8*x+16)=2*∫x*dx/(x-4)². Полагая в выражении для F2(x) x-4=t и учитывая, что dx=dt, получим I1=F1(2)-F1(0)+F(-2)-F(-4), где F(t)=2*∫(t+4)*dt/t². Отсюда F1(x)=-2*ln/x-4/, F(t)=2*ln/t/-8/t и тогда I1=-2*ln/-2/+2*ln/-4/+2*ln/-2/+8/2-2*ln/-4/-8/4=4-2=2.
2) найдём I2. Уравнение прямой ВС имеет вид: x=2. Так как x=const, то dx=0 и тогда I2=F(2)-F(1), где F(y)=-∫2*dy/y²=2/y. Отсюда I2=2/2-2/1=-1.
3) найдём I3. Уравнение прямой АС имеет вид: y=2. Так как y=const, то dy=0 и тогда I3=F(0)-F(2), где F(x)=∫dx/2=1/2*x. Отсюда I3=0-1=-1.
Отсюда I=2+(-1)+(-1)=0. Это и следовало ожидать, так как криволинейный интеграл по замкнутому контуру В ДАННОМ СЛУЧАЕ должен быть равным нулю, потому что подынтегральное выражение представляет собой полный дифференциал du некоторой функции u(x,y). В самом деле, так как d/dy(1/y)=-1/y²=d/dx(-x/y²)=-1/y², то подынтегральное выражение действительно есть полный дифференциал.
Пошаговое объяснение:
1. Из двух дробей с одинаковым знаменателем всегда больше та, у которой больше числитель;
2. Из двух дробей с одинаковыми числителем и знаменателем всегда больше смешанная дробь (имеет целую часть);
1) 13/20 > 7/20 13/20+7/20=20/20 = 1 13/20-7/20 = 6/20 = 3/10
2) 4/15 < 8/15 4/15+8/15=12/15 = 4/5 4/15-8/15 = -4/15
3) 13/9 > 5/9 13/9+5/9=18/9 = 2 13/9-5/9 = 8/9
4)5/11 > 3/11 5/11+3/11 = 8/11 5/11-3/11 = 2/11
5) 1 5/12 > 5/12 1 5/12+5/12=1 10/12 = 1 5/6 1 5/12-5/12 = 1
6) 15/61 > 9/61 15/61+9/61= 24/61 15/61-9/61= 6/61
7) 7/33 < 28/33 7/33+28/33=35/33= 1 2/33 7/33-28/33=-21/33= -7/11
8) 4/27 < 18/27 4/27+18/27 = 22/27 4/27-18/27 = -14/27
9)19/25 > 13/25 19/25+13/25=32/25= 1 7/25 19/25-13/25= 6/25
10)7 2/7 > 13/7 7 2/7 > 1 6/7
7 2/7+1 6/7= 8 8/7= 9 1/7 7 2/7-1 6/7= 6 9/7-1 6/7 = 5 3/7
11) 29/103 < 38/103
29/103+38/103 = 67/103 29/103-38/103 = -9/103
12)107/152 < 213/152
107/152+213/152 = 320/152 = 2 16/152 = 2 2/19
107/152-213/152 = -106/152 = -53/76