В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
юля2760
юля2760
08.08.2022 22:10 •  Математика

Доказать, что n²+3n+2 ни при каких n ∈ n не является квадратом натурального числа

Показать ответ
Ответ:
Nastyaninisvn
Nastyaninisvn
08.10.2020 23:52
Представим данное выражение в виде произведения n²+3n+2=(n+1)(n+2). По определению квадрат любого числа есть произведение числа само на себя: а²=а*а, т.е. а=а. А в полученном выражении n+1≠n+2 при любом n, в том числе натуральном, т.е.квадрат не существует. чтд
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота