Начнём вот с какого факта: пусть a>1; положим a=1+α. Тогда an=(1+α)n=1+nα+n(n−1)2α2+⋯, где все остальные члены неотрицательны. Отсюда следует, что экспонента растёт быстрее квадратичной функции (коэффициент при n2 здесь положителен). Понятно, что такая квадратичная функция растёт быстрее линейной.
Это рассуждение доказывает, что limn→∞nan=0 при a>1. То же самое можно записать в виде n=o(an), где n→∞. Отсюда легко распространить утверждение на случай функций вместо последовательностей: limx→+∞xax=0, или x=o(ax) при x→+∞.
Начнём вот с какого факта: пусть a>1; положим a=1+α. Тогда an=(1+α)n=1+nα+n(n−1)2α2+⋯, где все остальные члены неотрицательны. Отсюда следует, что экспонента растёт быстрее квадратичной функции (коэффициент при n2 здесь положителен). Понятно, что такая квадратичная функция растёт быстрее линейной.
Это рассуждение доказывает, что limn→∞nan=0 при a>1. То же самое можно записать в виде n=o(an), где n→∞. Отсюда легко распространить утверждение на случай функций вместо последовательностей: limx→+∞xax=0, или x=o(ax) при x→+∞.
Блин слушай я так решала
Найдем расстояние, которое проехал автомобиль, для этого скорость автомобиля умножим на время:
90 * 3 = 270 км - расстояние, которое проехал автомобиль.
Найдем расстояние, которое проехал автобус, для этого скорость автобуса умножим на его время:
65 * 3 = 195 км - расстояние, которое проехал автобус.
Найдем расстояние, которое будет между автомобилем и автобусом через три часа, для этого сложим расстояние автомобиля и расстояние автобуса:
270 + 195 = 465 км - расстояние между автобусом и автомобилем.
ответ: 465 км - расстояние между автобусом и автомобилем.