Рассмотрим зависимое событие А (выбор ребенком второй буквы А), которое может произойти лишь в результате осуществления одной из несовместных гипотез В1,В2, В3, В4, В5, В6 (выбор первой буквы А, Е, М, Т, И, К соответственно), которые образуют полную группу событий. Их вероятности определяются классическим отношение числа благоприятных исходов к числу всех возможных исходов):
В решении методом полных вероятностей использована теорема сложения вероятностей несовместных событий (В1,В2, В3, В4, В5, В6) – это первый шаг, и теорема умножения вероятностей зависимых событий (событие А зависит от события В) – это второй шаг.
Все остальные меньше 3.
2) Наибольшая площадь при равном периметре - у квадрата.
ответ: Б) 3 и 3.
3) y = 2x^3 + 1/2*x^2 - x
На концах отрезка: y(0) = 0; y(1) = 2 + 1/2*1 - 1 = 3/2 - max.
Производная y' = 6x^2 + x - 1 = (3x - 1)(2x + 1) = 0
x = -1/2 - не входит в промежуток.
x = 1/3; y(1/3) = 2/27 + 1/2*1/9 - 1/3 = 4/54 + 3/54 - 18/54 = -11/54 - min.
ответ: В) -11/54
4) y = 1/3*x^3 - 4x + 5
На концах отрезка: y(-1) = 1/3*(-1) - 4(-1) + 5 = 9 - 1/3 = 8 2/3 - max
y(3) = 1/3*27 - 4*3 + 5 = 9 - 12 + 5 = 2
Производная y' = 1/3*3x^2 - 4 = x^2 - 4 = (x + 2)(x - 2) = 0
x = -2 - не входит в промежуток
x = 2; y(2) = 1/3*8 - 4*2 + 5 = 8/3 - 8 + 5 = 2 2/3 - 3 = -1/3 - min.
ответ: А) -1
Рассмотрим зависимое событие А (выбор ребенком второй буквы А), которое может произойти лишь в результате осуществления одной из несовместных гипотез В1,В2, В3, В4, В5, В6 (выбор первой буквы А, Е, М, Т, И, К соответственно), которые образуют полную группу событий. Их вероятности определяются классическим отношение числа благоприятных исходов к числу всех возможных исходов):
P(В1) = 3/10 = 0,3; P(В2) = 1/10 = 0,1; P(В3) = 2/10 = 0,2; P(В4) = 2/10 = 0,2; P(В5) = 1/10 = 0,1; P(В6) = 1/10 = 0,1.
Соответствующие условные вероятности события А также находятся по классическому определению:
P(B1-A) = 2/9; P(B2-A) = 3/9 = 1/3; P(B3-A) = 3/9 = 1/3; P(B4-A) = 3/9 = 1/3; P(B5-A) = 3/9 = 1/3; P(B6-A) = 3/9 = 1/3.
Вероятность наступления события по формуле полной вероятности равна:
P(A) = P(В1)*P(B1-A) + P(В2)*P(B2-A) + P(В3)*P(B3-A) + P(B4-A)*P(B4-A) + P(В5)*P(B5-A) + P(В6)*P(B6-A) = 0,3*2/9 + 0,1*1/3 + 0,2*1/3 + 0,2*1/3 + 0,1*1/3 + 0,1*1/3 = 2/30 + 1/30 + 2/30 + 2/30 + 1/30 + 1/30 = 9/30 = 3/10 = 0,3 = 30%
В решении методом полных вероятностей использована теорема сложения вероятностей несовместных событий (В1,В2, В3, В4, В5, В6) – это первый шаг, и теорема умножения вероятностей зависимых событий (событие А зависит от события В) – это второй шаг.
ответ: 30%.