Около окружности можно описать трапецию тогда и только тогда, когда равны суммы ее противоположных сторон. Следовательно, сумма оснований равна сумме боковых сторон и равна полупериметру трапеции.
Сумма оснований равна 100:2=50 см
Трапеция равнобокая, и каждая боковая сторона равна 50:2=25 см Площадь трапеции равна произведению ее высоты на полусумму оснований.
Высота трапеции равна диаметру окружности, вокруг которой она описана, и равна r·2=12·2=24cм. S=24·50:2=600 см²
Теперь найдем основания. Проведем из вершины тупого угла высоту к большему основанию. Высота отсекает от него отрезок, равный полуразности оснований. Обозначим его х. Из прямоугольного треугольника, в котором боковая сторона трапеции - гипотенуза, а катеты - высота и отрезок х, найдем х. х=√(25²-24²)=√49=7 см Так как х- это полуразность оснований, то полная разность 7·2=14 см. Сумма оснований 50. Пусть меньшее из них будет у, тогда большее у+14 у+у+14=50 2у=36 у=18 - это меньшее основание. 18+14=32 - это большее основание. ответ: Меньшее основание =18 см Большее основание =32 см Площадь трапеции =600 см
Следовательно, сумма оснований равна сумме боковых сторон и равна полупериметру трапеции.
Сумма оснований равна 100:2=50 см
Трапеция равнобокая, и каждая боковая сторона равна
50:2=25 см
Площадь трапеции равна произведению ее высоты на полусумму оснований.
Высота трапеции равна диаметру окружности, вокруг которой она описана, и равна r·2=12·2=24cм.
S=24·50:2=600 см²
Теперь найдем основания.
Проведем из вершины тупого угла высоту к большему основанию.
Высота отсекает от него отрезок, равный полуразности оснований. Обозначим его х.
Из прямоугольного треугольника, в котором боковая сторона трапеции - гипотенуза, а катеты - высота и отрезок х, найдем х.
х=√(25²-24²)=√49=7 см
Так как х- это полуразность оснований, то полная разность 7·2=14 см.
Сумма оснований 50. Пусть меньшее из них будет у, тогда большее у+14
у+у+14=50
2у=36
у=18 - это меньшее основание.
18+14=32 - это большее основание.
ответ:
Меньшее основание =18 см
Большее основание =32 см
Площадь трапеции =600 см
По течению:
Скорость (18+х)км/ч
Время в пути 40/(18+х) ч.
Против течения :
Скорость (18-х)
Время в пути 40/(18-х)
Всего время в пути : 5,5 -1 = 4,5 часа
40/(18+х ) + 40/(18-х) = 4,5 |× (18+x)(18-x)
40(18-x) + 40(18+x) = 4.5 (18+x)(18-x)
720- 40x + 720 + 40x = 4.5 (324-x²)
1440 = 4.5 (324 -x²) |÷4.5
320= 324-x²
x²= 324-320
x²= √4
x₁= 2 (км/ч) скорость течения реки
х₂= -2 - не удовл. условию задачи, т.к. скорость не может быть отрицательной величиной.
ответ: 2 км/ч скорость течения реки.