Математическое ожидание случайной величины Х, имеющей гипергеометрическое распределение, и ее дисперсия равны:
ПРИМЕР №1. В урне 2 белых и 3 черных шара. Шары наудачу достают из урны без возвращения до тех пор, пока не появится белый шар. Как только это произойдет, процесс прекращается. Составить таблицу распределения случайной величины X – числа произведенных опытов, найти F(x), P(X ≤ 2), M(X), D(X).·
Решение: Обозначим через А – появление белого шара. Опыт может быть проведен только один раз, если белый шар появится сразу:. Если же в первый раз белый шар не появился, а появился при втором извлечении, то X=2. Вероятность такого события равна . Аналогично: , , . Запишем данные в таблицу:
X 1 2 3 4
P 0,4 0,3 0,2 0,1
НайдемF(x):
Найдем P(X ≤ 2) = P(X = 1 или X = 2) = 0,4 + 0,3 = 0,7
1) сравнение дробей с одинаковыми знаменателями: больше та, у которой числитель больше
2) сравнение дробей с одинаковыми числителями: больше та, у которой знаменатель меньше
3) сравнение дробей с разными знаменателями: нужно привести к общему знаменателю, домножая и числители и жнаменатели дробей на число ( например: 1/2 и 3/5 домножаем на 5 первую дробь и на 2 вторую дробь, чтобы знаменать получился у обоих дробей 10, получается 5/10. И 6/10, больше вторая)
4) Правильная дробь эта та, в которой числитель меньше знаменателя, например 5/10, 6/7, 3/8 и т. Д.)
Неправильная дробь это та, у которой числитель больше знаменателя, например 5/2, 7/4, 9/5 и т. Д.)
Математическое ожидание случайной величины Х, имеющей гипергеометрическое распределение, и ее дисперсия равны:
ПРИМЕР №1. В урне 2 белых и 3 черных шара. Шары наудачу достают из урны без возвращения до тех пор, пока не появится белый шар. Как только это произойдет, процесс прекращается. Составить таблицу распределения случайной величины X – числа произведенных опытов, найти F(x), P(X ≤ 2), M(X), D(X).·
Решение: Обозначим через А – появление белого шара. Опыт может быть проведен только один раз, если белый шар появится сразу:. Если же в первый раз белый шар не появился, а появился при втором извлечении, то X=2. Вероятность такого события равна . Аналогично: , , . Запишем данные в таблицу:
X 1 2 3 4
P 0,4 0,3 0,2 0,1
НайдемF(x):
Найдем P(X ≤ 2) = P(X = 1 или X = 2) = 0,4 + 0,3 = 0,7
M(X) = 1 · 0,4 + 2 · 0,3 +3 · 0,2 + 4 · 0,1 = 2.
D(X) = (1-2)2 · 0,4 + (2-2)2 · 0,3 +(3-2)2 · 0,2 + (4-2)2 · 0,1 = 1
Пошаговое объяснение:
1) сравнение дробей с одинаковыми знаменателями: больше та, у которой числитель больше
2) сравнение дробей с одинаковыми числителями: больше та, у которой знаменатель меньше
3) сравнение дробей с разными знаменателями: нужно привести к общему знаменателю, домножая и числители и жнаменатели дробей на число ( например: 1/2 и 3/5 домножаем на 5 первую дробь и на 2 вторую дробь, чтобы знаменать получился у обоих дробей 10, получается 5/10. И 6/10, больше вторая)
4) Правильная дробь эта та, в которой числитель меньше знаменателя, например 5/10, 6/7, 3/8 и т. Д.)
Неправильная дробь это та, у которой числитель больше знаменателя, например 5/2, 7/4, 9/5 и т. Д.)
Подробнее - на -
Пошаговое объяснение: