Доказательство от противного. Допустим, что при данном условии задачи, выполняется противоположное утверждение. Т.е, отрицание того, что в хотя бы одной из клеток два (или более) кроликов. Это означает, что в каждой клетке менее двух кроликов, т.е. в каждой клетке один кролик или ни одного кролика. Но тогда сумма всех кроликов (по клеткам) будет меньше или равно (1+1) = 2, что вступает в противоречие с тем, что кроликов три, т.к. получается, что 3<=2. Т.о., допустив противное, мы пришли в противоречие с условием теоремы. Поэтому наше предположение ложно да и вообще невозможно. Т.о. (по логическому закону исключения третьего) теорема доказана.
5 - 4х = 1 + 1,2 х - х = 1 - 5
5 - 4х = 2,2 0х = - 4
4х = 5 - 2,2 Нет решения, потому что
4х = 2,8 на 0 делить нельзя
х = 2,8 : 4
х = 0,7
Проверка: -1,2 + (5 - 4 * 0,7) = 1
-1,2 + (5 - 2,8) = 1
-1,2 + 2,2 = 1
1 = 1
3) -6 + 7(х + 2) = 7х
-6 + 7х + 14 = 7х
7х - 7х = 6 - 14
0х = - 8
Нет решения, потому что на 0 делить нельзя