Пятьсот тридцать одна тысяча двадцать, два миллиона сто сорок тысяч пятьсот тридцать, девятьсот девять миллиардов четыреста сорок четыре миллиона сто двадцать девять тысяч восемь, два миллиона восемьсот пятьдесят тысяч три, семьдесят три миллиона триста две тысячи сто, один миллиард двести тридцать два миллиона шестьсот семьдесят одна тысяча семьдесят четыре, девяносто три миллиона четыреста пять тысяч два
Пошаговое объяснение:
Пятьсот тридцать одна тысяча двадцать, два миллиона сто сорок тысяч пятьсот тридцать, девятьсот девять миллиардов четыреста сорок четыре миллиона сто двадцать девять тысяч восемь, два миллиона восемьсот пятьдесят тысяч три, семьдесят три миллиона триста две тысячи сто, один миллиард двести тридцать два миллиона шестьсот семьдесят одна тысяча семьдесят четыре, девяносто три миллиона четыреста пять тысяч два
Пятьсот тридцать одна тысяча двадцать, два миллиона сто сорок тысяч пятьсот тридцать, девятьсот девять миллиардов четыреста сорок четыре миллиона сто двадцать девять тысяч восемь, два миллиона восемьсот пятьдесят тысяч три, семьдесят три миллиона триста две тысячи сто, один миллиард двести тридцать два миллиона шестьсот семьдесят одна тысяча семьдесят четыре, девяносто три миллиона четыреста пять тысяч два
Пошаговое объяснение:
Пятьсот тридцать одна тысяча двадцать, два миллиона сто сорок тысяч пятьсот тридцать, девятьсот девять миллиардов четыреста сорок четыре миллиона сто двадцать девять тысяч восемь, два миллиона восемьсот пятьдесят тысяч три, семьдесят три миллиона триста две тысячи сто, один миллиард двести тридцать два миллиона шестьсот семьдесят одна тысяча семьдесят четыре, девяносто три миллиона четыреста пять тысяч два
ответ:Первая задача решается по формуле Байеса
0.2*0.85/(0.3*0.8+0.5*0.9+0.2*0.85) - искомая вероятность
Вторая задача - по формуле полной вероятности
0.3*0.4+0.5*0.3+0.2*0.2 - искомая вероятность
2)Решение.
a) Вероятность, что первый шар белый Р=5/9
Осталось 4 белых, всего 8 шаров, вероятность вытащить второй белый = 4/8=1/2
Р=5/9*1/2 = 5/18 =0,28
б) Р=4/9 * 3/8 = 1/6
в) Вероятность, что первый черный, а второй белый Р=4/9 * 5/8 = 5/18
Вероятность, что первый белый, а второй черный Р=5/9 * 4/8 = 5/18
Окончательно, вероятность, что 1 белый и один черный Р=5/18 + 5/18 = 10/18 = 5/9
3)Найдите вероятность наступления ровно 3 успехов в 8 испытаниях Бернулли с вероятностью успеха p =1/2
Решение. Вероятность успеха =1/2, а вероятность не успеха равна 1-1/2=1/2.
Р8(3) = С83*(1/2)3*(1/2)5 = 8!/(3!*5!) * (1/2)8 = 8*7/256 = 7/32 ≈0,219
Пошаговое объяснение:100%правильно лайк поставьте а то жаловатся буду