Пусть х км/ч - собственная скорость катера. Тогда скорость катера по течению - (х+2) км/ч, против течения (х-2) км/ч. Катер был в пути 19 ч-15ч = 4 ч. Из них 2 ч стоял, т. е. катер плыл 4-2=2 ч. Против течения катер плыл 7/(х-2) часов, по течению плыл 27/(х+2) ч. Составляем уравнение: 7/(х-2) + 27/(х+2) = 2 7*(х+2) + 27(х-2) = 2 (х+2)*(х-2) 7х+14+27х-54=2х(квадрат)-8 34х-40-2хквадрат+ 8 =0 2хквадрат -34х + 32=0 хквадрат - 17х + 16 =0 D=17*17-4*16=289-64=225 х1=(17-15)/2 = 1 (км/ч) - не может быть решением данной задачи, т. к. 1 км/ч меньше 2 км/ч, а скорость катера не может быть меньше скорости течения.
Против течения катер плыл 7/(х-2) часов, по течению плыл 27/(х+2) ч.
Составляем уравнение:
7/(х-2) + 27/(х+2) = 2
7*(х+2) + 27(х-2) = 2 (х+2)*(х-2)
7х+14+27х-54=2х(квадрат)-8
34х-40-2хквадрат+ 8 =0
2хквадрат -34х + 32=0
хквадрат - 17х + 16 =0
D=17*17-4*16=289-64=225
х1=(17-15)/2 = 1 (км/ч) - не может быть решением данной задачи, т. к. 1 км/ч меньше 2 км/ч, а скорость катера не может быть меньше скорости течения.
х2 = (17+15)/2 = 16 км/ч
ответ. Собственная скорость катера 16 км/ч
у' = x² + 5x - 6.
Находим критические точки, приравняв производную нулю:
x² + 5x - 6 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=5^2-4*1*(-6)=25-4*(-6)=25-(-4*6)=25-(-24)=25+24=49;
Дискриминант больше 0, уравнение имеет 2 корня:x₁=(√49-5)/(2*1)=(7-5)/2=2/2=1;x₂=(-√49-5)/(2*1)=(-7-5)/2=-12/2=-6.
Исследуем значение производной вблизи критических точек:
х -6.5 -5.5 0.5 1.5
у 3.75 -3.25 -3.25 3.75.
Если производная меняет знак с + на -, то это максимум функции, если с - на +, то минимум.
На промежутках, где производная положительна, там функция возрастает, а где отрицательна - там функция убывающая.
ответ: -∞ < x < -6, 1 < x < +∞ функция возрастает,
-6 < x < 1 функция убывает.