В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
esyajm
esyajm
31.07.2020 21:19 •  Математика

Знайдіть сума п'яти перших членів геометрічної прогресії, перший член якої 20, а знаменник 1/2

Показать ответ
Ответ:
azamatyusupov
azamatyusupov
16.11.2020 05:06

Чтобы решить уравнение, содержащее переменную под знаком модуля, надо освободиться от знака модуля, используя его определение.

Пример 1: begin mathsize 12px style open vertical bar х close vertical bar equals 5 end style, так как значение х может быть как равным 5, так и -5, то корнями являются ± 5

Пример 2: Найдем корни следующего уравнения: begin mathsize 12px style open vertical bar 5 х minus 12 close vertical bar equals 36 end style

Решение 1

5х-12 = 36

5х =36+12

5х=48

х=9,6

Решение 2

5х-12 = - 36

5х= - 36 +12

5х = -24

х = - 4,8

Проверка 1

begin mathsize 12px style open vertical bar 5 asterisk times 9 comma 6 minus 12 close vertical bar equals open vertical bar 48 minus 12 close vertical bar equals open vertical bar 36 close vertical bar equals 36 end style

Проверка 2

begin mathsize 12px style open vertical bar 5 asterisk times open parentheses negative 4 comma 8 close parentheses minus 12 close vertical bar equals open vertical bar negative 24 minus 12 close vertical bar equals open vertical bar negative 36 close vertical bar equals 36 end style

Пример 3: Найдем корни следующего уравнения: begin mathsize 12px style open vertical bar 4 х plus 52 close vertical bar equals negative 65 end style

Решение: так как модуль любого выражения есть число положительное, а в данном выражении оно равно отрицательному чслу, то уравнение не имеет решения

0,0(0 оценок)
Ответ:
Вилка000
Вилка000
11.09.2020 20:32

Примеры

Неравенства с модулем

|x^2 - 2x + 2| + |2x + 1| <= 5

Линейные

7x - 6 < x + 12

С квадратом

-3x^2 + 2x + 5 <= 0

Со степенью

2^x + 2^3/2^x < 9

С кубом (неравество третьей степени)

2x^3 + 7x^2 + 7x + 2 < 0

С кубическим корнем

cbrt(5x + 1) - cbrt(5x - 12) >= 1

С натуральным логарифмом

(ln(8x^2 + 24x - 16) + ln(x^4 + 6x^3 + 9x^2))/(x^2 + 3x - 10) >= 0

Иррациональные с квадратным корнем

sqrt(x - 2) + sqrt(x - 5) <= sqrt(x- 3)

Показательные неравенства

8^x + 18^x > 2*27^x

Логарифмические неравенства

log(((7 - x)/(x + 1))^2)/log(x + 8) <= 1 - log((x + 1)/(x - 7))/log(x + 8)

Тригонометрические

tg(x - pi/3) >= -sqrt(3)

Квадратное неравенство

25x^2 - 30x + 9 > 0

С четвёртой степенью

(x - 6)^4*(x - 4)^3*(x + 6)/(x - 7) < 0

С дробью

2x^2 - 15x + 35 - 30/x + 8/x^2 >= 0

Решение с целыми числами

(4x^2 - 3x - 1)/(2x^2 + 3x + 1) > 0

Пошаговое объяснение:

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота