1) x(7 - x) > 0 Умножаем на -1, при этом меняется знак неравенства x(x - 7) < 0 По методу интервалов x ∈ (0; 7)
2) x^2*(3 - x)(x + 1) <= 0 Умножаем на -1, при этом меняется знак неравенства x^2*(x - 3)(x + 1) >= 0 x^2 > 0 при любом x =/= 0. Поэтому x = 0 - это решение. Делим на x^2 (x - 3)(x + 1) >= 0 По методу интервалов x ∈ (-oo; -1] U [3; +oo) Добавим решение x=0 и получим: x ∈ (-oo; -1] U [0] U [3; +oo)
Так, так, так. У линейной функции возрастание/убывание зависит от углового коэффицента k : если k>0, функция возрастает, k<0 - убывает. Всё просто. Т.е. в убывании обе функции линейные, k<0 и в первом (k=-7), и во втором . С этим разобрались. Теперь к возрастанию. Я не знаю, в каком Вы классе, постараюсь объяснить доступно. Чтобы определить возрастание/убывание функции, нужно взять значения , два произвольных числа, но . Пусть мы имеем функцию , тогда вычисляем значения функции в этих двух точках, имеем и , так вот, если , тогда функция возрастающая, если же , то она убывающая, но только ПРИ УСЛОВИИ, что она монотонна на всей области определения (т.е. ТОЛЬКО возрастает или ТОЛЬКО убывает), в противном случае мы говорим о ПРОМЕЖУТКАХ возрастания и убывания. 1), т.е. функция возрастающая. А вот задание с не совсем корректно, так как эта функция возрастает только при x>0, при x<0 она убывает, x=0 - Точка экстремума. Если уж брать математический анализ, то легко взять производную и исследовать функцию на "скорость изменения" (алгебраический смысл производной) . Если производная в некоторой точке отрицательная, то функция убывает, если производная положительная, то функция возрастает, если производная равна 0, то это точка экстремума. Очевидно, что при x<0 функция убывает, при x>0 возрастает. Если же доказывать возрастание на промежутке x>0, тогда действуем, как и в первом случае (только не берем значения из ненужного нам промежутка): , функция возрастает, что и требовалось доказать.
Умножаем на -1, при этом меняется знак неравенства
x(x - 7) < 0
По методу интервалов x ∈ (0; 7)
2) x^2*(3 - x)(x + 1) <= 0
Умножаем на -1, при этом меняется знак неравенства
x^2*(x - 3)(x + 1) >= 0
x^2 > 0 при любом x =/= 0. Поэтому x = 0 - это решение.
Делим на x^2
(x - 3)(x + 1) >= 0
По методу интервалов x ∈ (-oo; -1] U [3; +oo)
Добавим решение x=0 и получим:
x ∈ (-oo; -1] U [0] U [3; +oo)
3) 3x^2 - 7x + 2 < 0
D = 7^2 - 4*3*2 = 49 - 24 = 25 = 5^2
x1 = (7 - 5)/6 = 2/6 = 1/3; x2 = (7 + 5)/6 = 12/6 = 2
По методу интервалов x ∈ (1/3; 2)