В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
alexandrsub67p08sqm
alexandrsub67p08sqm
06.10.2021 08:43 •  Алгебра

Для заданої функції знайти: Частинні похідні першого та другого порядків
диференціали першого та другого порядків
екстремум функції
за до диференціалу другого порядку визначити знак екстремуму
градієнт функції у точці М0(1;2)
похідну за напрямком L=M0 M1. M1(3;4).
ІВ


Для заданої функції знайти: Частинні похідні першого та другого порядків диференціали першого та дру

Показать ответ
Ответ:
Eldar1001
Eldar1001
31.10.2022 02:34
V=(40-X)(64-X)X - функция.
найти максимум, х∈(0, 40).
найдем производную от V=(40-X)(64-X)X=х³-104х²+2560х
она равна 3х²-208х+2560
найдем стационарные точки , приравняв производную к 0 , и решив кв. ур-ние             3х²-208х+2560=0
1)  х=(104+√(104²-3·64·40))/3=(104+√((8·13)²-3·64·40)))/3=
=(104+√(8²(13²-3·40)))/3=(104+8√(13²-3·40))/3=(104+8√(169-120))/3=
=(104+8·7)/3=160/3

2) х=(104-√(104²-3·64·40))/3=(104-56)/3=16
ОСТАЛОСЬ по достаточному условию экстремума убедиться, что  х=16 - точка максимума, проверяем знаки производной при переходе через эту точку, решаем неравенство 3х²-208х+2560>0, или простыми вычислениями для значений х из соответствующих промежутков.)

вот как-то так...-))
0,0(0 оценок)
Ответ:
Margo231
Margo231
21.03.2020 01:27
Удобнее всего решать эту задачу, используя единицы измерения скорости – км/мин. А в конце все полученные результаты перевести в км/ч.

Пусть скорость медленного гонщика составляет    x    км/мин.

Раз быстрый гонщик обогнал впервые медленного через 48 минут, то с таким же успехом, мы можем переформулировать это утверждение и так: быстрый гонщик через 48 минут опережал медленного на 8 км (длину одного круга). А значит, их относительная скорость удаления составляет:    8 : 48 = 1/6    км/мин.

Из найденного следует, что скорость быстрого гонщика мы можем записать, как:    ( x + 1/6 )    км/мин.

Сказано, что медленный гонщик ехал на 17 минут дольше, а значит, если мы вычтем из времени в пути медленного гонщика время в пути быстрого гонщика, то эта разность и должна составить 17 минут. Ясно, что время в пути для каждого гонщика мы можем найти, разделив полный путь трассы на скорость каждого из них, тогда:

\frac{ 85 \cdot 8 }{x} - \frac{ 85 \cdot 8 }{ x + 1/6 } = 17 \ ;

\frac{ 85 \cdot 8 }{x} - \frac{ 85 \cdot 8 }{ x + 1/6 } = 17 \ ; \ \ \ || : 17

\frac{ 5 \cdot 8 }{x} - \frac{ 5 \cdot 8 }{ x + 1/6 } = 1 \ ;

\frac{ 5 \cdot 8 }{x} - \frac{ 5 \cdot 8 }{ x + 1/6 } = 1 \ ; \ \ \ || : 40

\frac{1}{x} - \frac{1}{ x + 1/6 } = \frac{1}{40} \ ;

\frac{ x + 1/6 }{ x ( x + 1/6 ) } - \frac{x}{ x ( x + 1/6 ) } = \frac{1}{40} \ ;

\frac{ ( x + 1/6 ) - x }{ x^2 + x/6 } = \frac{1}{40} \ ;

\frac{ x + 1/6 - x }{ x^2 + x/6 } = \frac{1}{40} \ ; \ \ \ || \cdot ( x^2 + x/6 )

\frac{1}{6} = \frac{ x^2 + x/6 }{40} \ ;

\frac{1}{6} = \frac{ x^2 + x/6 }{40} \ ; \ \ \ || \cdot 120

20 = 3 \cdot ( x^2 + x/6 ) \ ;

20 = 3 \cdot ( x^2 + x/6 ) \ ; \ \ \ || \cdot 2

40 = 6x^2 + x \ ;

6x^2 + x - 40 = 0 \ ;

D = 1^2 - 4 \cdot 6 \cdot (-40) = 1 + 24 \cdot 40 = 1 + 960 = 900 + 61 = 30^2 + 30 + 31 = 31^2 \ ;

x \in \frac{ -1 \pm 31 }{ 2 \cdot 6 } \ ;

Поскольку    x 0 \ ,    так, как это скорость,
направленная в заданную сторону (вперёд), то:

x = \frac{ -1 + 31 }{ 2 \cdot 6 } = \frac{30}{ 2 \cdot 6 } = \frac{15}{6} \ ;

Это и есть скорость второго (медленного) гонщика.
Осталось только перевести её в км/ч:

15/6 км/мин = 15 км : 6 мин = 150 км : 60 мин = 150 км : час = 150 км/час.

О т в е т : 150 км.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота