Чтобы делилось на 36, достаточно доказать делимость на 4 и 9.
Если делать совсем по-школьному, то можно так.
Преобразуем исходное выражение:
2n⁶-n⁴-n²=n²(2n⁴-n²-1)=n²(n²-1)(2n²+1)=n²(n-1)(n+1)(3n²-(n²-1))=
=(n-1)n(n+1)(3n³-(n-1)n(n+1)).
Чтобы делилось на 36, достаточно доказать делимость на 4 и 9.
Если делать совсем по-школьному, то можно так.
Преобразуем исходное выражение:
2n⁶-n⁴-n²=n²(2n⁴-n²-1)=n²(n²-1)(2n²+1)=n²(n-1)(n+1)(3n²-(n²-1))=
=(n-1)n(n+1)(3n³-(n-1)n(n+1)).