РешениеПусть скорость 2-ого велосипедиста х км/ч, а скорость 1-ого велосипедиста (х+1) км/ч. Тогда время, затраченное первым велосипедистом - 90/(х+1) ч, а время, затраченное вторым велосипедистом - 90/х ч. Составим уравнение: 90/(х+1)+1=90/х (90х + х² + х — 90х + 90)/(х(х+1)) = 0 х² + х - 90 = 0 D = 1 + 4*90 = 361 x₁ = (- 1 + 1 9)/2 = 9 x₂ = (- 1 - 19)/2 = - 10 — не удовлетворяет условию задачи. 9 км/ ч - скорость 2-ого велосипедиста 1) 9 + 1 = 10 км/ч - скорость 1-ого велосипедиста ответ: 10 км/ч; 9 км/ч.
Решение
Пусть скорость 2-ого велосипедиста х км/ч,
а скорость 1-ого велосипедиста (х+1) км/ч.
Тогда время, затраченное первым велосипедистом - 90/(х+1) ч,
а время, затраченное вторым велосипедистом - 90/х ч.
Составим уравнение:
90/(х+1)+1=90/х
(90х + х² + х — 90х + 90)/(х(х+1)) = 0
х² + х - 90 = 0
D = 1 + 4*90 = 361
x₁ = (- 1 + 1 9)/2 = 9
x₂ = (- 1 - 19)/2 = - 10 — не удовлетворяет условию задачи.
9 км/ ч - скорость 2-ого велосипедиста
1) 9 + 1 = 10 км/ч - скорость 1-ого велосипедиста
ответ: 10 км/ч; 9 км/ч.
5^(x-2) = 5^0 2^(x² -3x +8) = 2^6
x-2 = 0 x² -3x +8 = 6
x = 2 x² -3x +2 = 0
2) 3·4^x =48 x = 1 и х = 2
4^x = 16 6)7^(2x-8)·7^(x+7) = 0
4^x = 4² нет решений
x=2 7)(0,2)^x ≤ 25·5√5
3)3^x=27·3√9 5^-x ≤ 5²·5·5^1/2
3^x = 3³·3·3 5^-x ≤5^3,5
3^x = 3^5 -x ≤ 3,5
x = 5 x ≥ -3,5
4)3^x + 3^(x +1) = 4 8)(1/2)^-x + 2^(3 +x) ≤9
3^x(1 +3) = 4 2^x +2^(3 +x) ≤ 9
3^x·4 = 4 2^x(1 +2^3) ≤ 9 | :9
3^x = 1 2^x ≤ 1
x = 0 2^x ≤2^0
x≤ 0