На книжной полке стоят 15 различных книг по алгебре, 20 –по литературе, 7 –по геометрии. Сколькими различными можно выбрать:
а) книгу по математике?
б) 2 нематематические книги?
в) 2 книги по математике и 1 книгу по литературе?
г) 2 книги по алгебре или 3 книги по литературе?
y= (x-10)²·(x+10)-7
y=(x-10)·(x-10)·(x+10)-7
но можно перемножить выражения во второй и третьей скобках:
y=(x-10)·(x-10)·(x+10)-7
y=(x-10)·(x²-100) -7
Применяем правило вычисления производной произведения
y`=(x-10)`·(x²-100) + (х-10)·(х²-100)`=
=1·(x²-100) +(x-10)·2x=
=(x-10)·(x-10) + (x-10)·2x=
=(x-10)·(x-10+2x)=(x-10)(3x-10)
y`=0
x-10=0 или 3х-10=0
х=10 или x=10/3
(10/3)∉[8;18]
х=10 - точка минимума, производная меняет знак с - на +
В точке х=10 функция принимает наименьшее значение на [8;18]
y(10)=(10-10)^2(10+10)-7=0-7=-7
О т в е т. -7
x^3 - y^3=3x^2y+5 (1)
xy^2=1 умножаем на 3 обе части 3xy^2 = 3 (2)
вкладываем (1) и (2)
x^3 - y^3 +3xy^2 = 3x^2y+5 +3
x^3 - y^3 +3xy^2 - 3x^2y = 8 применяем формулу КУБ разности
(x-y)^3 = 8
x-y = ³√8 =³√2^3 = 2
x = y + 2
подставляем Х
(y+2)y^2=1
y^3 +2y^2 -1 =0
y^3 + y^2 + y^2 -1 =0
y^2(y + 1) + (y -1)(y+1) =0
(y+1) (y^2+y-1) =0
y1 = 0 ; x1 = y+2 = 0 +2 = 2 ( 2; 0 )
y^2+y-1 =0 - квадратное уравнение
D = 1^2 - 4*1*-1 = 5
√D =√5
y = 1/2 (-1 +/- √5)
y2 =1/2 (-1 - √5) ; x2 = y2 + 2 = 1/2 (-1 - √5) +2 = 1/2 (3 - √5) ;
y3 =1/2 (-1 + √5) ; x3 = y3 + 2 = 1/2 (-1 + √5) +2 = 1/2 (3 + √5) ;
ОТВЕТ
( 2; 0 )
( 1/2 (3 - √5); 1/2 (-1 - √5) )
( 1/2 (3 + √5); 1/2 (-1 + √5) )