Y = e^x(2x+3) 1. Находим интервалы возрастания и убывания. Первая производная. f'(x) = (2x+3)*(e^x) + 2*(e^x) или f'(x) = (2x+5)*(e^x) Находим нули функции. Для этого приравниваем производную к нулю (2x+5)*(e^x) = 0 Откуда: x1 = -5/2 (-∞ ;-5/2) f'(x) < 0 функция убывает (-5/2; +∞) f'(x) > 0 функция возрастает В окрестности точки x = -5/2 производная функции меняет знак с (-) на (+). Следовательно, точка x = -5/2 - точка минимума. 2. Найдем интервалы выпуклости и вогнутости функции. Вторая производная. f''(x) = (2x+3)*(e^x)+2*(e^x) или f''(x) = (2x+5)*(e^x) Находим корни уравнения. Для этого полученную функцию приравняем к нулю. (2x+5)*9e^x) = 0 Откуда точки перегиба: x1 = -7/2 (-∞ ;-7/2) f''(x) < 0 функция выпукла (-7/2; +∞) f''(x) > 0 функция вогнута
Строим гиперболу и затем верхнюю часть графика отобразить в нижнюю(отрицательную часть)
Область определения:
Подставим у=кх в упрощенную функцию.
(*)
Очевидно, что при k=0 уравнение (*) решений не будет иметь.
1) Если x>0, то и это уравнение решений не имеет при k>0(так как левая часть всегда положительно).
2) Если x<0, то и при k<0 это уравнение решений не имеет.
Если объединить 1) и 2) случаи, то уравнение будет иметь хотя бы один корень.
Подставим теперь , имеем
Итак, при k=0 и k=±6.25 графики не будут иметь общих точек
1. Находим интервалы возрастания и убывания. Первая производная.
f'(x) = (2x+3)*(e^x) + 2*(e^x)
или
f'(x) = (2x+5)*(e^x)
Находим нули функции. Для этого приравниваем производную к нулю
(2x+5)*(e^x) = 0
Откуда:
x1 = -5/2
(-∞ ;-5/2) f'(x) < 0 функция убывает
(-5/2; +∞) f'(x) > 0 функция возрастает
В окрестности точки x = -5/2 производная функции меняет знак с (-) на (+). Следовательно, точка x = -5/2 - точка минимума.
2. Найдем интервалы выпуклости и вогнутости функции. Вторая производная.
f''(x) = (2x+3)*(e^x)+2*(e^x)
или
f''(x) = (2x+5)*(e^x)
Находим корни уравнения. Для этого полученную функцию приравняем к нулю.
(2x+5)*9e^x) = 0
Откуда точки перегиба:
x1 = -7/2
(-∞ ;-7/2) f''(x) < 0 функция выпукла
(-7/2; +∞) f''(x) > 0 функция вогнута