В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
КoТuK
КoТuK
30.12.2022 03:24 •  Алгебра

Найди значение выражения arccos(cosπ)+17
(ответ округли до сотых)

Показать ответ
Ответ:
kataefimova
kataefimova
10.12.2021 11:43
y= \dfrac{2.5|x|-1}{|x|-2.5x^2} = \dfrac{2.5|x|-1}{-|x|(2.5|x|-1)}=- \dfrac{1}{|x|}

Строим гиперболу y=-\dfrac{1}{x} и затем верхнюю часть графика отобразить в нижнюю(отрицательную часть)

Область определения: \displaystyle \left \{ {{|x|\ne0} \atop {2.5|x|-1\ne0}} \right. ~~~\Rightarrow~~~~ \left \{ {{x\ne 0} \atop {x\ne \pm0.4}} \right.

Подставим у=кх в упрощенную функцию.

kx=- \dfrac{1}{|x|}              (*)

Очевидно, что при k=0 уравнение   (*) решений не будет иметь.

1) Если x>0, то kx^2=-1 и это уравнение решений не имеет при k>0(так как левая часть всегда положительно).

2) Если x<0, то kx^2=1 и при k<0 это уравнение решений не имеет.

Если объединить 1) и 2) случаи, то уравнение будет иметь хотя бы один корень.

Подставим теперь x=\pm0.4, имеем

k\cdot (-0.4)=- \dfrac{1}{0.4} \\ \\ k=6.25                                         k\cdot 0.4=- \dfrac{1}{0.4} \\ \\ k=-6.25

Итак, при k=0 и k=±6.25 графики не будут иметь общих точек

Постройте график функции у=2,5|х|-1/|х|-2,5х^2 и определитель,при каких значениях k прямая у=kx не и
0,0(0 оценок)
Ответ:
витка9
витка9
28.11.2021 12:50
Y = e^x(2x+3)
1. Находим интервалы возрастания и убывания. Первая производная.
f'(x) = (2x+3)*(e^x) + 2*(e^x)
или
f'(x) = (2x+5)*(e^x)
Находим нули функции. Для этого приравниваем производную к нулю
(2x+5)*(e^x) = 0
Откуда:
x1 = -5/2
(-∞ ;-5/2)  f'(x) < 0  функция убывает
 (-5/2; +∞)  f'(x) > 0  функция возрастает
В окрестности точки x = -5/2 производная функции меняет знак с (-) на (+). Следовательно, точка x = -5/2 - точка минимума.
2. Найдем интервалы выпуклости и вогнутости функции. Вторая производная.
f''(x) = (2x+3)*(e^x)+2*(e^x)
или
f''(x) = (2x+5)*(e^x)
Находим корни уравнения. Для этого полученную функцию приравняем к нулю.
(2x+5)*9e^x) = 0
Откуда точки перегиба:
x1 = -7/2
(-∞ ;-7/2)  f''(x) < 0 функция выпукла
(-7/2; +∞)  f''(x) > 0 функция вогнута
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота