Обратим внимание, что выражения в скобках похожи. Обозначим выражение во второй скобке за t. Тогда получим t=x+1/x. Но вторую скобку заменить также "в лоб" мы не можем. Пойдём на небольшую хитрость. Возведём наше t в квадрат. Получим: t^2=x^2+2x*1/x+1/x^2=x^2+2+1/x^2. Получившееся значение уж больно похоже на то, что нам нужно. Всю картину портит только двойка справа. Но поскольку двойка балом не правит и никак не зависит от х, то просто перенесём её влево к нашему t^2. Тогда что мы имеем? А имеем мы вторую замену, поскольку только что выразили нашу первую скобку: x^2+1/x^2=t^2-2. Теперь собираем урожай и производим замену. Получаем: (t^2-2)+t=0 --> t^2+t-2=0. А это есть ни что иное как квадратное уравнение. Находим дискриминант: D=1-4*(-2)=1+8=9. И корни: t1= (-1+3)/2=1; t2=(-1-3)/2=-2 Делаем обратную замену. Вспомним, что наше t=x+1/x. Сначала подставим t1: x+1/x=1 | домножим на х x^2+1=x --> x^2-x+1=0. Получаем ещё одно квадратное уравнение, но уже относительно х. Находим его дискриминант: D=1-4<0. Дискриминант меньше нуля. Следовательно, корней нет. Теперь подставим t2: x+1/x=-2 |домножим на х x^2+1=-2x --> x^2+2x+1=0. Решим квадратное уравнение. Посчитаем дискриминант: D=4-4=0. Найдём корень уравнения. x=(-2+/-0)/2=-1 Теперь смотрим на наши квадратные уравнения относительно х (первое с t не трогаем). В первом квадратном уравнении у нас корней не было, во втором всего один. Он и является ответом ответ: х=-1
Но вторую скобку заменить также "в лоб" мы не можем. Пойдём на небольшую хитрость. Возведём наше t в квадрат. Получим: t^2=x^2+2x*1/x+1/x^2=x^2+2+1/x^2.
Получившееся значение уж больно похоже на то, что нам нужно. Всю картину портит только двойка справа. Но поскольку двойка балом не правит и никак не зависит от х, то просто перенесём её влево к нашему t^2.
Тогда что мы имеем? А имеем мы вторую замену, поскольку только что выразили нашу первую скобку: x^2+1/x^2=t^2-2.
Теперь собираем урожай и производим замену. Получаем:
(t^2-2)+t=0 --> t^2+t-2=0. А это есть ни что иное как квадратное уравнение.
Находим дискриминант: D=1-4*(-2)=1+8=9.
И корни: t1= (-1+3)/2=1;
t2=(-1-3)/2=-2
Делаем обратную замену. Вспомним, что наше t=x+1/x.
Сначала подставим t1:
x+1/x=1 | домножим на х
x^2+1=x --> x^2-x+1=0. Получаем ещё одно квадратное уравнение, но уже относительно х. Находим его дискриминант: D=1-4<0. Дискриминант меньше нуля. Следовательно, корней нет.
Теперь подставим t2:
x+1/x=-2 |домножим на х
x^2+1=-2x --> x^2+2x+1=0. Решим квадратное уравнение. Посчитаем дискриминант: D=4-4=0. Найдём корень уравнения. x=(-2+/-0)/2=-1
Теперь смотрим на наши квадратные уравнения относительно х (первое с t не трогаем).
В первом квадратном уравнении у нас корней не было, во втором всего один. Он и является ответом
ответ: х=-1
строим график функции
у= х^3 кубическая парабола
х=0 , у= 0^3 = 0 ( 0, 0 ) 1 точка
х=1 , у= 1^3 = 1 ( 1 , 1 ) 2 точка
все остальные точки находят по этому прнципу. Пишу уже готовые точки
х 0 1 2 -1 -2
у 0 1 8 -1 -8
строим график у= -х это прямая
нужно найти только 2 точки, но я найду 4 для удобства построения
у= -х
х= 1 , у = -1 ( 1 , -1) 1 точка
х=2 , у= -2 ( 2 , -2) 2 точка
х= -1 , у= - ( -1) = 1 ( -1 , 1 ) 3 точка
х= -2 , у= - ( -2) = 2 ( -2 , 2) 4 точка
х 1 2 -1 -2
у -1 -2 1 2
точка пересечения двух графиков ( 0 , 0 )
как находить точки можешь не писать , а сразу таблицу с точками.