В равнобедренном треугольнике ABC проведена высота BD к основанию AC. Длина высоты 8,6 см, длина боковой стороны 17,2 см. Определите углы этого треугольника.
Х км/ч - собственная скорость теплохода (х+4) км/ч - скорость теплохода по течению (х-4) км/ч - скорость теплохода против течения
180 км - расстояние, которое теплоход проходит по течению реки и это же расстояние он проходит против течения
180/(х+4) ч - время, которое затратил теплоход на путь 180 км по течению реки 180/(х-4) ч - время, которое затратил теплоход на путь 180 км против течения реки
По условию 2часа теплоход стоял, поэтому всё время движения составляет: 26 ч - 2 ч = 24 ч
(х+4) км/ч - скорость теплохода по течению
(х-4) км/ч - скорость теплохода против течения
180 км - расстояние, которое теплоход проходит по течению реки и это же расстояние он проходит против течения
180/(х+4) ч - время, которое затратил теплоход на путь 180 км по течению реки
180/(х-4) ч - время, которое затратил теплоход на путь 180 км против течения реки
По условию 2часа теплоход стоял, поэтому всё время движения составляет:
26 ч - 2 ч = 24 ч
Получим уравнение:
180/(х+4) + 180/(х-4) = 24
180/(х+4) + 180/(х-4) - 24 = 0
При ОДЗ х > 0 и х ≠ 4, получаем:
180*(х-4+х+4) - 24х²+384=0
180*2х-24х²+384=0
360x - 24x² + 384 = 0
-24х²+360х+384=0
Упростим, для этого обе части уравнения делим на (-24) и получаем:
х²-15х-16=0
D = b²-4ac
D= 15² - 4 · 1 · (-16) = 225+64=289
√D = √289 = 17
x₁ = (15 + 17)/2 = 32/2 = 16 км/ч - собственная скорость теплохода (т.к. удовлетворяет ОДЗ)
х₂ = (15 - 17)/2 = -2/2 = - 1 - отрицательное значение не удовлетворяет ОДЗ.
ответ: 16 км/ч
9x2 + 3x; б) 6xy +3x2y – 12xy2
2°. Разложите на множители:
а) y(у – 1) + 2(y – 1); б) x2 – 64.
3°. Сократите дробь (x^2+ 3x)/(3a+ax).
4°. У выражение (а – b)2 – (а – b)(а + b).
5°. Решите уравнение x2 + 7x = 0.
6 У выражение: с(с – 2)(с + 2) – (с – 1)(с2 + с + 1).
7 Найдите корни уравнения 3x3 – 27x = 0.
8 Разложите на множители многочлен 2х + 2у – х2 – 2ху – у2.
2 вариант.
1°. Вынесите общий множитель за скобки:
а) 2ab – ab2; б) 5a4 – 10a3 + 10a2
2°. Разложите на множители:
а) ax – ay + 2x – 2y; б) 9a2 – 16b2.
3°. Сократите дробь (2a+4)/(a^(2 )- 4).
4°. У выражение (x – 1) (x + 1) – x(x – 3).
5°. Решите уравнение x2 – 25 = 0.
6 У выражение: (х + 1)(х2 + х + 1)
Объяснение: