Із КИЕВА ДО ЖИТОМИРА одночасно виїхали два автомобілі. Швидкість одного була на 10 км/год білею за швидкість другого тому він прибув до житомера на 40 хв раніше. Знайдіть швидкість кожного автомобіля, якщо відстань між мвстами становить 140 км.
Похоже, тут опечатка. Должно быть 3cos^2 x. 5sin^2 x + 3*2sin x*cos x - 3cos^2 x = 4sin^2 x + 4cos^2 x Переносим все налево sin^2 x + 6sin x*cos x - 7cos^2 x = 0 Делим все на cos^2 x tg^2 x + 6tg x - 7 = 0 Квадратное уравнение относительно tg x (tg x - 1)(tg x + 7) = 0 1) tg x = 1; x1 = pi/4 + pi*k 2) tg x = -7; x2 = -arctg(7) + pi*n
Если же опечатки нет, то получается уравнение 4 степени 5sin^2 x + 3*2sin x*cos x - 3(cos 2x)^2 = 4sin^2 x + 4cos^2 x 5sin^2 x + 6sin x*cos x - 3(cos^2 x - sin^2 x)^2 = 4sin^2 x + 4cos^2 x 3(cos^4 x-2sin^2 x*cos^2 x+sin^4 x)-sin^2 x-6sin x*cos x+4cos^2 x = 0 3sin^4 x-sin^2 x+3cos^4 x+4cos^2 x-6sin^2 x*cos^2 x-6sin x*cos x = 0 Как это решать дальше - непонятно. Если разделить на cos^4 x, то 3tg^4 x - tg^2 x/cos^2 x + 3 + 4/cos^2 x - 6tg^2 x - 6tg x/cos^2 x = 0 Что тоже оптимизма не добавляет.
5sin^2 x + 3*2sin x*cos x - 3cos^2 x = 4sin^2 x + 4cos^2 x
Переносим все налево
sin^2 x + 6sin x*cos x - 7cos^2 x = 0
Делим все на cos^2 x
tg^2 x + 6tg x - 7 = 0
Квадратное уравнение относительно tg x
(tg x - 1)(tg x + 7) = 0
1) tg x = 1; x1 = pi/4 + pi*k
2) tg x = -7; x2 = -arctg(7) + pi*n
Если же опечатки нет, то получается уравнение 4 степени
5sin^2 x + 3*2sin x*cos x - 3(cos 2x)^2 = 4sin^2 x + 4cos^2 x
5sin^2 x + 6sin x*cos x - 3(cos^2 x - sin^2 x)^2 = 4sin^2 x + 4cos^2 x
3(cos^4 x-2sin^2 x*cos^2 x+sin^4 x)-sin^2 x-6sin x*cos x+4cos^2 x = 0
3sin^4 x-sin^2 x+3cos^4 x+4cos^2 x-6sin^2 x*cos^2 x-6sin x*cos x = 0
Как это решать дальше - непонятно. Если разделить на cos^4 x, то
3tg^4 x - tg^2 x/cos^2 x + 3 + 4/cos^2 x - 6tg^2 x - 6tg x/cos^2 x = 0
Что тоже оптимизма не добавляет.
Объяснение:
Графиком функции является парабола;
множитель при х² меньше нуля - ветви вниз.
Область определения: значение функции (у) может быть определено для любого значения аргумента (х)
D(y) = R
Точки экстремума (точки, в которых производная обращается в 0 или не определена:
y' = (-x^2+4)' \\ y'=-2x +0 =-2x
Найдем значение х для у'=0
Для любого х > 0 у < 4
Для любого х < 0 у < 4
Точка (0;4) - точка максимума фунции.
Нижняя граница области значений функции отсутствует.
Следовательно, Область значений функции
E(y): y \in (- \inf ; 4]