где x - переменная, a, b, c - числа, , называется квадратным.
При решении квадратного неравенства необходимо найти корни соответствующего квадратного уравнения . Для этого необходимо найти дискриминант данного квадратного уравнения. Можно получить 3 случая: 1) D=0, квадратное уравнение имеет один корень; 2) D>0 квадратное уравнение имеет два корня; 3) D<0 квадратное уравнение не имеет корней.
В зависимости от полученных корней и знака коэффициента a возможно одно из шести расположений графика функции
Если требуется найти числовой промежуток, на котором квадратный трехчлен больше нуля, то это числовой промежуток находится там, где парабола лежит выше оси ОХ.
Если требуется найти числовой промежуток, на котором квадратный трехчлен меньше нуля, то это числовой промежуток, где парабола лежит ниже оси ОХ.
Если квадратное неравенство нестрогое, то корни входят в числовой промежуток, если строгое - не входят.
Такой метод решения квадратного неравенства называется графическим.
Можем рассмотреть сумму как сумма членов арифметической прогрессии с первым членом a₁=40 и d=1. Применим формулу для суммы первых n-членов арифметической прогрессии:
Объяснение:
Решение квадратного неравенства
Неравенство вида
где x - переменная, a, b, c - числа, , называется квадратным.
При решении квадратного неравенства необходимо найти корни соответствующего квадратного уравнения . Для этого необходимо найти дискриминант данного квадратного уравнения. Можно получить 3 случая: 1) D=0, квадратное уравнение имеет один корень; 2) D>0 квадратное уравнение имеет два корня; 3) D<0 квадратное уравнение не имеет корней.
В зависимости от полученных корней и знака коэффициента a возможно одно из шести расположений графика функции
Если требуется найти числовой промежуток, на котором квадратный трехчлен больше нуля, то это числовой промежуток находится там, где парабола лежит выше оси ОХ.
Если требуется найти числовой промежуток, на котором квадратный трехчлен меньше нуля, то это числовой промежуток, где парабола лежит ниже оси ОХ.
Если квадратное неравенство нестрогое, то корни входят в числовой промежуток, если строгое - не входят.
Такой метод решения квадратного неравенства называется графическим.
19320
Объяснение:
Обозначим сумму
S=40+41+42+...+198+199+200.
Вычислим сумму двумя Отметим, что в сумме количество слагаемых равен (200-40)+1=161.
Выражения для суммы напишем двумя и суммируем почленно:
S= 40 + 41 + 42 +...+198+199+200
S=200+199+198+...+ 42 + 41 + 40
Тогда:
2·S=(40+200)+(41+199)+(42+198)+...+(198+42)+(199+41)+(200+40)=
=240+240+240+...+240+240+240=161·240=38640.
Отсюда
S=38640:2=19320.
Можем рассмотреть сумму как сумма членов арифметической прогрессии с первым членом a₁=40 и d=1. Применим формулу для суммы первых n-членов арифметической прогрессии:
Так как n=161, то