3. определите взаимное расположение точек a.b.c если ab=3см. bc=4см. ac=5см а) точка a лежит между b и c б)точка b лежит между a и c b)точка c лежит между a и b г) точка a,b,c не лежат на прямой
1. число должно делится на 4, т.к у ромба все стороны равны.
2. два угла по 65°=130°, (360-130)/2=115°
3.формула периметра параллелограмма по Р=2(х+у), отсюда у=(Р-2х)/2
4. диагонали параллелограмма при пересечении образуют со сторонами равнобедренные треугольники. У равнобедренных треугольников углы при основании равны. Имеем два угла по 20° , значит оставшийся угол равен (180-20-20)=140; (180- это сумма всех углов любого треугольника)
5. Если диагональ перпендикулярна стороне, значит она образует с этой стороной угол 90°. Второй угол дан по условию -20°, Третий угол =(180-90-20) =70°
Диагонали трапеции делят ее на 4 треугольника. Треугольники, прилегающие к основаниям трапеции, подобны по первому признаку подобия: "Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны", т.к <CAD=<ACB, а <BDA=<DBC как внутренние накрест лежащие при параллельных прямых AD и ВС и секущих АС и ВD соответственно. Итак, треугольники АОD и СОВ подобны с коэффициентом подобия ВС/АD=5/7. Тогда АО/ОС=DO/OB=5/7. ответ: диагональ трапеции разбивается другой диагональю на отрезки в отношении 5:7.
1)В; 2)Б; 3)Г; 4)В: 5)Б
Объяснение:
1. число должно делится на 4, т.к у ромба все стороны равны.
2. два угла по 65°=130°, (360-130)/2=115°
3.формула периметра параллелограмма по Р=2(х+у), отсюда у=(Р-2х)/2
4. диагонали параллелограмма при пересечении образуют со сторонами равнобедренные треугольники. У равнобедренных треугольников углы при основании равны. Имеем два угла по 20° , значит оставшийся угол равен (180-20-20)=140; (180- это сумма всех углов любого треугольника)
5. Если диагональ перпендикулярна стороне, значит она образует с этой стороной угол 90°. Второй угол дан по условию -20°, Третий угол =(180-90-20) =70°
Итак, треугольники АОD и СОВ подобны с коэффициентом подобия
ВС/АD=5/7. Тогда АО/ОС=DO/OB=5/7.
ответ: диагональ трапеции разбивается другой диагональю на отрезки в отношении 5:7.