7. Установіть відповідність між вектором, зображеним на рисунку (1-4) та його можливими координатами (А-Д). 1 YA 2 y, A (-1;0) Б (1:0) 0 о AB В (-1; -1) г 3 СО ул. 4 (0:1) у. , д (0:-1) о АЯ 0 АЯ
Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
Объяснение:
Рисунок прилагается.
Дано: ABC прямоугольный треугольник, ∠ С = 90°, CH- высота, AH = 2 см - проекция катета AC на гипотенузу, BH = 18 см - проекция катета BC на гипотенузу.
Найти катеты AC и BC.
Обозначим для удобства катеты AC = a, BC = b, проекции катетов AH = a₁, BH = b₁, высоту CH = h.
Высота в прямоугольном треугольнике, опущенная на гипотенузу, равна среднему пропорциональному проекций катетов на гипотенузу.
h² = a₁*b₁ = 2 * 18 = 36; h = 6
⇒ Высота треугольника, опущенная на гипотенузу CH = h = 6 см.
Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
Объяснение:
Рисунок прилагается.
Дано: ABC прямоугольный треугольник, ∠ С = 90°, CH- высота, AH = 2 см - проекция катета AC на гипотенузу, BH = 18 см - проекция катета BC на гипотенузу.
Найти катеты AC и BC.
Обозначим для удобства катеты AC = a, BC = b, проекции катетов AH = a₁, BH = b₁, высоту CH = h.
Высота в прямоугольном треугольнике, опущенная на гипотенузу, равна среднему пропорциональному проекций катетов на гипотенузу.
h² = a₁*b₁ = 2 * 18 = 36; h = 6
⇒ Высота треугольника, опущенная на гипотенузу CH = h = 6 см.
Из прямоугольного ΔACH по теореме Пифагора:
a² = h² + a₁² = 6² + 2² = 36 + 4 = 40; a = √40 = 2√10
Катет AC = 2√10 см/
Из прямоугольного ΔBCH по теореме Пифагора:
b² = h² + b₁² = 6² + 18² = 36 + 324 = 360; b = √360 = 6√10
Катет BC = 6√10 см.
Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
См. ОБъяснение
Объяснение:
В равнобедренном треугольнике медиана, проведённая к его основанию, является также и его высотой.
Так как размеры не заданы, то строим так:
1) отложим основание треугольника длиной 6 см; обозначим крайние точки отрезка А и С; АС = 6 см;
2) разделим это основание пополам, на 2 отрезка каждый длиной 3 см; середина АС - это точка М; АМ = 3 см; МС = 3 см;
3) к точке М проводим перпендикуляр; на нём откладываем 4 см, считая от основания, это точка В; ВМ = 4 см;
4) соединяем точку В с точкой А; АВ = 5 см;
5) соединяем точку В с точкой С; АС = 5 см.
Построение закончено.