Ab и cd диаметры одной окружности с центром о докажите что все хорды AC и BD параллельны(выполните на рисунке нужные построения) Доказательство. Рассмотрим треугольникии .Их равные элементы: Воспользуемся .Получим что треугольник = треугольнику , откуда следует , что =
усть скорость первого автомобилиста равна x км/ч, а длина пути равна s км [величина s введена для удобства, она потом сократится]. тогда скорость второго автомобилиста на 1-й половине пути равна x-15 км/ч. время, за которое 1-й автомобилист проехал весь путь равно t1 = s/x.второй автомобилист проехал 1-ю половину пути за время t2_1 = (s/2): (x-15) = s/(2*(x- а вторую половину пути – за время (s/2)/90 =s/180; время всюду измеряется в часах. по условию, t1 = t2_1+t2_2. получаем уравнение:
s/x = s/(2*(x-15)) + s/180
сократим (как и было обещано j ) на s и решим уравнение.
1/x = 1/(2*(x-15)) + 1/180 (2)
2*(x-15)*180 = 180*x + 2*(x-15)*x
(x-15)*180 = 90*x + (x-15)*x
180*x – 15*180 = 90*x + x2 – 15*x
180*x – 15*180 = 90*x + x2 – 15*x
x2 + (90-15 – 180)*x +15*180 = 0
x2 — 105*x +15*180 = 0
решим полученное квадратное уравнение.
d = 1052 – 4*15*180 = (7*15)2 – 4*15*(15*12) =
= 152*(72 – 4*12) = 152*(49 – 48) = 152
следовательно, уравнение (2) имеет 2 корня:
x1 = (105+15)/2 = 60; x2 = (105-15)/2 = 45
так как x> 54, то x=60
ответ 60
Длина перпендикуляра, проведённого из данной точки к данной прямой, называется расстоянием от этой точки к этой прямой.
#1.
Этим расстоянием будет являться отрезок BM, его длину нужно найти. Этот отрезок представляет собой катет прямоугольного треугольника, лежащий напротив угла в 30°. По свойству прямоугольного треугольника такой катет будет равен половине гипотенузы, в данном случае – AM. AM = 26, следовательно BM = 13.
ответ: 13.
#2. Сумма острых углов прямоугольного треугольника по его свойству должна быть равна 90°, тогда угол M + угол A = 90°, а так как угол M = 60°, то угол A = 30°. Нам требуется найти BM. BM – это катет, лежащий напротив угла в 30°, значит BM = 1/2 × AM, а так как AM = 30, то BM = 15.
ответ: 15.
#5. Я прикрепил рисунок к заданию. Нам нужно будет найти расстояние от точки M до AB, то есть перпендикуляр MF. Сумма острых углов прямоугольного треугольника равна 90°, тогда угол B + угол A = 90°. Угол B = 60° по условию, значит угол A = 30°. Тогда MF = 1/2 AM, так как MF – катет, лежащий напротив угла в 30. AM по условию равно 8, значит MF = 4.
ответ: 4.
#6. Рисунок к заданию прикрепил. Так как требуется найти расстояние от точки M до отрезка AB, то нужно найти перпендикуляр ME. Это задание можно решить двумя :
#1. ME – перпендикуляр, проведённый из вершины треугольника ABM, значит ME – высота. В треугольнике AMB два угла равны, значит треугольник равнобедренный. А в равнобедренном треугольнике высота, проведённая к основанию, является медианой, то есть ME – медиана. Есть свойство прямоугольного треугольника, которое гласит, что медиана, проведённая из вершины прямого угла прямоугольного треугольника, равна половине гипотенузы, тогда ME = 1/2 × AB, а раз AB = 15 по условию, то ME = 7,5.
#2. В прямоугольном треугольнике сумма острых углов равна 90°, то есть угол A + угол B = 90°, а раз они равны, то угол A = углу B = 45°, тогда треугольник AMB – равнобедренный. ME – перпендикуляр, а значит треугольники AME и BME – прямоугольные. В прямоугольном треугольнике сумма острых углов равна 90°, то есть угол BME + угол B = 90° и угол A + угол AME = 90°. Углы A и B = 45°, как мы уже убедились, значит углы BME и AME = 45°. Тогда треугольники AME и BME – равнобедренные, а значит в этих треугольниках боковые стороны равны. Тогда ME = AE и ME = BE. Треугольник AMB – равнобедренный, ME – высота, а значит ME – медиана, тогда AE = BE. Эти стороны образуют AB, которая равна 15, значит AE = BE = 7,5. А так как ME равна этим сторонам, то ME = 7,5.
ответ: 7,5.
Объяснение: