Через вершину b рівнобедреного трикутника abc проведено перпендикуляр sb до його площини завдовжки 4см. точка m - середина сторони ac. знайдіть кут між прямою sm і площиною трикутника, якщо ab=bc=5см, ac=6см
Площадь куска с надписью "Витя" равна площади куска с надписью "Митя".
Пояснення:
Пусть длина торта равна Х = Х1 + Х2, где Х1 - длина левой части ( там где написано "Витя" ), а Х2 - длина правой части ( там где написано "Митя" ).
Пусть ширина торта равна У = У1 + У2, где У1 - ширина верхней части ( там где написано "Витя" ), а У2 - ширина нижней части ( там где написано "Митя" ).
Тогда площадь куска с надписью "Витя" равна S1 = Х1 × У1, а площадь куска с надписью "Митя" равна S2 = Х2 × У2.
Поскольку в прямоугольнике проведена диагональ, то должна выполняться пропорция:
Х / У = Х1 / У2 = Х2 / У1 ( в пропорции индексы 1 и 2 возле Х и У не совпадают, так как мы привязали номера к кускам с именами и взяли номера Х слева на право, а номера У сверху вниз ).
Приведем уравнение для площади куска с надписью "Митя" ( S2 = Х2 × У2 ) к индексам Х1 и У1.
Из пропорции:
Х2 / У1 = Х1 / У2
Получаем:
Х2 = Х1 × У1 / У2
Подставим в уравнение для S2:
S2 = Х2 × У2 = Х1 × У1 × У2 / У2 = Х1 × У1 = S1
В результате мы получили, что площадь куска с надписью "Витя" равна площади куска с надписью "Митя".
Дано: ABCD ромб ; BD =30 ; AC =40 ; AK ⊥ (ABCD) ; AK= 10 .
d( K , CD) = d( K , BC) - ?
Проведем из вершины A высоту ромба : AH ⊥ CD (AH = h) и соединим точка H с точкой K . KH -наклонная , AH ее проекция на плоскости ABCD. По теореме трех перпендикуляров CD ⊥ KH ,т.е. KH есть расстояние от точки K до стороны CD . Из ΔKAH : KH = √(KA² +AH²).
Сторона ромба равно a =√ ( (BD/2)² +(AC/2)² ) = (1/2)*√ ( BD² +AC)² = (1/2)*√ ( 30² +40)² =(1/2)*50=25. S(ABCD) =BD*AC/2 = 30*40/2 = 600. C другой стороны S(ABCD) =a*AH ⇒ 600 =25*AH ⇒AH =24. Окончательно : KH = √(KA² +AH²) = √(10²+24)² =√(100+576) =√676=26.
Відповідь:
Площадь куска с надписью "Витя" равна площади куска с надписью "Митя".
Пояснення:
Пусть длина торта равна Х = Х1 + Х2, где Х1 - длина левой части ( там где написано "Витя" ), а Х2 - длина правой части ( там где написано "Митя" ).
Пусть ширина торта равна У = У1 + У2, где У1 - ширина верхней части ( там где написано "Витя" ), а У2 - ширина нижней части ( там где написано "Митя" ).
Тогда площадь куска с надписью "Витя" равна S1 = Х1 × У1, а площадь куска с надписью "Митя" равна S2 = Х2 × У2.
Поскольку в прямоугольнике проведена диагональ, то должна выполняться пропорция:
Х / У = Х1 / У2 = Х2 / У1 ( в пропорции индексы 1 и 2 возле Х и У не совпадают, так как мы привязали номера к кускам с именами и взяли номера Х слева на право, а номера У сверху вниз ).
Приведем уравнение для площади куска с надписью "Митя" ( S2 = Х2 × У2 ) к индексам Х1 и У1.
Из пропорции:
Х2 / У1 = Х1 / У2
Получаем:
Х2 = Х1 × У1 / У2
Подставим в уравнение для S2:
S2 = Х2 × У2 = Х1 × У1 × У2 / У2 = Х1 × У1 = S1
В результате мы получили, что площадь куска с надписью "Витя" равна площади куска с надписью "Митя".
d( K , CD) = d( K , BC) - ?
Проведем из вершины A высоту ромба : AH ⊥ CD (AH = h) и соединим точка H с точкой K . KH -наклонная , AH ее проекция на плоскости ABCD.
По теореме трех перпендикуляров CD ⊥ KH ,т.е. KH есть расстояние от точки K до стороны CD .
Из ΔKAH : KH = √(KA² +AH²).
Сторона ромба равно a =√ ( (BD/2)² +(AC/2)² ) = (1/2)*√ ( BD² +AC)² =
(1/2)*√ ( 30² +40)² =(1/2)*50=25.
S(ABCD) =BD*AC/2 = 30*40/2 = 600. C другой стороны S(ABCD) =a*AH ⇒
600 =25*AH ⇒AH =24.
Окончательно :
KH = √(KA² +AH²) = √(10²+24)² =√(100+576) =√676=26.
ответ : 26.