Если провести к большему основанию трапеции две высоты из углов, принадлежащих меньшему основанию, то мы получим прямоугольник, в котором противоположные стороны равны. Так же мы получим два прямоугольных треугольника. Теперь из большего основания вычитаем сторону прямоугольника, которая параллельна меньшему основанию трапеции: 16 - 8=8. Так как у нас два равных треугольника, то мы этот результат делим на 2 : 8 : 2 = 4 - это катет прямоугольного треугольника. Теперь находим высоту, которую мы провели ранее, по теореме Пифагора : Высота = 5 ^ 2 - 4 ^2= 25 - 16 = 9. Теперь из получившегося результата извлекаем корень и получаем 3. Это высота. Дальше пользуемся формулой площади трапеции: S= ((a + b) h) / 2 S= (( 16 + 8) 3) / 2 = 36 ответ : 36
Начертим окружность с центром в точке А произвольного радиуса (большего, чем расстояние до прямой ВС). Точки пересечения этой окружности с прямой ВС - К и М. Начертим две окружности одинакового произвольного радиуса (большего половины отрезка КМ) с центрами в точках К и М. Через точки пересечения этих окружностей (Е и F) проводим прямую. EF ∩ BC = H. АН - искомая высота.
Прямая EF всегда пройдет через точку А, так как является серединным перпендикуляром к отрезку КМ, а точка А равноудалена от концов этого отрезка, а значит лежит на серединном перпендикуляре.
16 - 8=8.
Так как у нас два равных треугольника, то мы этот результат делим на 2 :
8 : 2 = 4 - это катет прямоугольного треугольника. Теперь находим высоту, которую мы провели ранее, по теореме Пифагора :
Высота = 5 ^ 2 - 4 ^2= 25 - 16 = 9. Теперь из получившегося результата извлекаем корень и получаем 3. Это высота.
Дальше пользуемся формулой площади трапеции:
S= ((a + b) h) / 2
S= (( 16 + 8) 3) / 2 = 36
ответ : 36
Начертим две окружности одинакового произвольного радиуса (большего половины отрезка КМ) с центрами в точках К и М.
Через точки пересечения этих окружностей (Е и F) проводим прямую.
EF ∩ BC = H. АН - искомая высота.
Прямая EF всегда пройдет через точку А, так как является серединным перпендикуляром к отрезку КМ, а точка А равноудалена от концов этого отрезка, а значит лежит на серединном перпендикуляре.