В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
кэм121
кэм121
01.04.2022 10:39 •  Геометрия

Это из наглядно геометрии 10 класс. DC=5корень21, AC=BC, BD=25 Pabdc=62
Найти расстояние от C до AB.


Это из наглядно геометрии 10 класс. DC=5корень21, AC=BC, BD=25 Pabdc=62Найти расстояние от C до AB.

Показать ответ
Ответ:
Ваня111111222
Ваня111111222
11.01.2024 12:49
Мы знаем, что AC=BC, поэтому треугольник ABC - равнобедренный треугольник.

Также, мы знаем, что BD=25.

Мы хотим найти расстояние от точки C до отрезка AB.

Давайте обозначим точку пересечения прямых AC и BD как точку E.

Мы знаем, что треугольник ABE - прямоугольный треугольник, так как BD - высота к гипотенузе AE, и угол ABE прямой.

Также, мы знаем, что P(ABDC) = 62, поэтому P(ABD) + P(DCE) = 62.

P(ABD) = (AB * BD) / 2 = (AB * 25) / 2 = (25AB) / 2 = 12.5AB.

Мы знаем, что BD = 25, поэтому P(DCE) = 62 - 12.5AB.

P(DCE) = DC * CE / 2 = (5√21 * CE) / 2 = (5/2)√21 * CE.

Теперь мы можем записать выражение для P(ABD) + P(DCE):

12.5AB + (5/2)√21 * CE = 62.

Так как треугольник ABC равнобедренный, то AC = BC, и AB = 2 * AC.

Подставим это в наше выражение:

12.5(2AC) + (5/2)√21 * CE = 62.

25AC + (5/2)√21 * CE = 62.

Теперь давайте рассмотрим треугольник CBE.

Мы знаем, что AD и BD - биссектрисы треугольника ABC, поэтому эти отрезки делят стороны треугольника в пропорции.

То есть, мы можем записать следующие пропорции:

AC / AB = CD / BD = AE / EB.

Запишем пропорцию для AC и AB:

AC / AB = CD / BD.

AC / (2AC) = (5√21) / 25.

1 / 2 = (5√21) / 25.

Теперь решим эту пропорцию относительно AC:

AC = 1 / 2 * 25 / (5√21).

AC = 5 / (2√21).

Теперь подставим эту информацию в наше предыдущее выражение:

25(5 / (2√21)) + (5/2)√21 * CE = 62.

125 / (2√21) + (5/2)√21 * CE = 62.

125 + 5√21 * CE = 62 * 2√21.

125 + 5√21 * CE = 124√21.

5√21 * CE = 124√21 - 125.

5√21 * CE = √21 * (124 - 125 / √21).

5CE = (124 - 125 / √21).

CE = (124 - 125 / √21) / 5.

CE = (124√21 - 125) / 5√21.

Теперь у нас есть значение CE. Чтобы найти расстояние от C до AB, нам нужно найти длину отрезка BE.

Мы знаем, что AC = 5 / (2√21), поэтому EC = AC - AE.

EC = 5 / (2√21) - (124√21 - 125) / 5√21.

EC = (5 - 2(124√21 - 125)) / (2√21 * 5).

EC = (5 - 248√21 + 250) / (10√21).

EC = (255 - 248√21) / (10√21).

Выражение (255 - 248√21) / (10√21) представляет собой расстояние от C до AB.

Окончательный ответ: Расстояние от точки C до отрезка AB равно (255 - 248√21) / (10√21).
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота