В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
tamer20052
tamer20052
25.09.2020 12:29 •  Геометрия

Известно что в равнобедренную трапецию площадью 576 можно вписать окружность если расстояние между точками касания этой окружности боковых сторон равно 3 то радиус равен​

Показать ответ
Ответ:
nastyonakononenkova
nastyonakononenkova
08.12.2020 19:13

Пусть нижнее основание равно а, верхнее равно b, боковая сторона равна с, угол при нижнем основании равен α.

У трапеции, в которую вписана окружность, боковая сторона равна средней линии: с = (a + b)/2.

Используем формулу площади трапеции:

S = ((a+b)/2)*h = ((a+b)/2)*√(ab).

Получаем первое уравнение:  ((a+b)/2)*√(ab) = 576 или

(a+b)*√(ab) = 1152.

Теперь используем заданное условие: расстояние между точками касания этой окружности боковых сторон равно 3.

Выразим расстояние t между точками касания.

t = b+2(b/2)*cos α = b(1 + cos α) = 3.

Косинус альфа выразим так:

cos α = ((a - b)/2)/c = ((a - b)/2)/((a + b)/2) = (a - b)/(a + b).

Тогда второе уравнение получим в виде:

b(1 + ((a - b)/(a + b))) = 3.

Решаем систему из двух уравнений с неизвестными a и b.

{(a+b)*√(ab) = 1152.

{b(1 + ((a - b)/(a + b))) = 3.

Решение даёт значение оснований трапеции:

a = 12(√15 + 4) ≈ 94,4758.

b = -12(√15 - 4) ≈ 1,5242.

Находим радиус r вписанной окружности.

r = h/2 = √(ab)/2 = 6.

ответ: радиус равен 6.

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота