если прямая принадлежит плоскости то любая ее точка принадлежит плоскости
если две точки прямой принадлежат плоскости, то и вся прямая принадлежит плоскости
поэтому возможные варианты
точки А, В, Д могут лежать на одной прямой(прямая лежит в плоскости альфа)
любая прямая, что проходит через три из данных точек будет лежать в плоскости альфа (так как будет содержать две точки, что в ней лежат)
[если прямая проходит через две из точек А, В, и Д, то она лежит в плоскости альфа, поэтому провести плоскость через такую прямую (АВ, АД или ВД) и точку С невозможно, иначе точка С попадет в плоскость альфа]
Объяснение:
Дано: ABCD.
BE=DF; AE║CF;
∠BAD+∠ADC=180°.
Доказать: ABCD – параллелограмм.
Доказательство:
1) Если при пересечении двух прямых третьей, сумма односторонних углов равна 180°, прямые параллельны.
∠BAD+∠ADC=180° (условие) - односторонние при АВ и СD и секущей АD.
⇒ АВ ║ СD
2) ∠1=∠2 - накрест лежащие при АЕ║СF и секущей ВD.
∠1=∠3; ∠2=∠4 - вертикальные.
⇒ ∠3=∠4.
3) Рассмотрим ΔАВЕ и ΔFCD.
BE=DF (условие)
∠3=∠4 (п.2)
∠АВЕ=∠FDC - накрест лежащие при АВ║СD и секущей BD.
⇒ ΔАВЕ = ΔFCD (по стороне и прилежащим к ней углам, 2 признак)
⇒АВ = CD (соответственные элементы)
Признак параллелограмма: если в четырехугольнике две противоположные стороны равны и параллельны - это параллелограмм.
АВ ║ СD ; АВ = CD
⇒ ABCD – параллелограмм.
если прямая принадлежит плоскости то любая ее точка принадлежит плоскости
если две точки прямой принадлежат плоскости, то и вся прямая принадлежит плоскости
поэтому возможные варианты
точки А, В, Д могут лежать на одной прямой(прямая лежит в плоскости альфа)
любая прямая, что проходит через три из данных точек будет лежать в плоскости альфа (так как будет содержать две точки, что в ней лежат)
[если прямая проходит через две из точек А, В, и Д, то она лежит в плоскости альфа, поэтому провести плоскость через такую прямую (АВ, АД или ВД) и точку С невозможно, иначе точка С попадет в плоскость альфа]