Диаметр окружности равен стороне описанного квадрата и диагонали вписанного. Поэтому у квадрата №2 диагональ равна стороне квадрата №1, то есть b; поэтому площадь второго квадрата в 2 раза меньше, чем у первого. Бесконечная сумма площадей выглядит так b^2*(1 + 1/2 + 1/4 + ) = 2*b^2; это просто геометрическая прогрессия со знаменателем q = 1/2; Линейные размеры двух последовательных окружностей связаны так же, как и линейные размеры последовательных квадратов (а - почему?), то есть длина первой окружности π*b; второй π*b/√2 и так далее, сумма длин окружностей будет такая π*b(1+ 1/√2 + 1/2 + 1/2√2 + ...) = π*b/(1 - 1/√2) = π*b*√2*(√2 + 1) = π*b*(2 + √2)
Номер 4
<АВС=180-114=66 градусов
<А=180-(66+38)=180-104=76 градусов
Номер 5
<38=<А=38 градусов,как вертикальные
<В=<С=(180-38):2=142:2=71 градус
Номер 10
<68=<А=68 градусов,как вертикальные
<В=180-(42+68)=70 градус
Внешний угол В
180-70=110 градусов
Номер 11
<?=50 градусов,как вертикальный
<С=40,как вертикальный
<А=180-(40+50)=90 градусов
Номер 16
В задании какая-то ошибка,наверное в соотношении углов 3:5:9
Номер 17
На чертеже вертикальные углы,они равны внутренним углам треугольника,а Сумма внутренних углов треугольника равна 180 градусов,поэтому
<1+<2+<3=180 градусов
Номер 22
<С=180-115=65 градусов
<А+<В=115 градусов
<В=(115-25):2=45 градусов
<А=45+25=70 градусов
Номер 23
<В=3Х
<А=Х
3Х-Х=40
2Х=40
Х=40:2=20 градусов
<В=20•3=60 градусов
<А=20 градусов
<1=180-20=160 градусов
<2=180-60=120 градусов
Номер 28
<ВDC+<ADB=180 градусов,как смежные
<АDB=180-120=60 градусов
<АВD=180-(60+90)=30 градусов
<В=30•2=60 градусов
<С=90-60=30 градусов
Номер 29
<2=<1-<3=84 градуса
<2=4Х
<3=Х
<3=84:4=21 градус
<?=180-(21+84)=180-105=75 градусов
<1=180-75=105 градусов
Объяснение:
b^2*(1 + 1/2 + 1/4 + ) = 2*b^2; это просто геометрическая прогрессия со знаменателем q = 1/2;
Линейные размеры двух последовательных окружностей связаны так же, как и линейные размеры последовательных квадратов (а - почему?), то есть длина первой окружности π*b; второй π*b/√2 и так далее, сумма длин окружностей будет такая
π*b(1+ 1/√2 + 1/2 + 1/2√2 + ...) = π*b/(1 - 1/√2) = π*b*√2*(√2 + 1) = π*b*(2 + √2)