Плоскости α и β параллельны. С точки М, не принадлежит этим плоскостям и не находится между ними, проведено 2 лучи. Один из них пересекает плоскости α и β в точках А1 и B1, а второй в точках А2, В2. Найдите длину отрезка MA2, если MB2 = 14см и MA1/MB1 = 2/7 Умоляшки
В прямоугольном треугольнике АВD катет АВ лежит против угла 30°, значит гипотенуза ВD=2*АВ, что и требовалось доказать.
б) В треугольнике DBC ВС<(DB+DC) - по теореме о неравенстве треугольника: "Каждая сторона треугольника меньше суммы двух других сторон".
Но DB=DC, тогда ВС<2DB, а DB=2АВ.
Значит ВС<4АВ, что и требовалось доказать.