I. Верно ли , что всякая теорема имеет обратную ? Нет ( например , теорема о сумме смежных углов не имеет обратной ) 2 , можно ли найти два смежных угла , сумма которых равна 360 " ? Нет ( по соответствующеи теореме , сумма двух любых смежных углов равна 90°) З. Существует ли треугольник , у которого два прямых угла ? Нет ( если бы у некого треугольника было бы два прямых угла , то по теореме о сумме углов треугольника на два других приходилось бы о " , что невозможно по аксиоме об измерении углов ) 4. Верно ли , что у равностороннего треугольника все стороны равны ? Да ( по определению равностороннего треугольника ) 5. Действительно ли у всякого треугольника есть три вершины ? Да ( по определению треугольника ) 6. Верно ли , что аксиомы необходимо доказывать ? Нет ( аксиома - утверждение , не требующее доказательств ) 7.Действительно ли сумма двух внутренних односторонних углов при параллельных прямых и секущей равна 1807 Да ( по свойству углов , образованных при пересечении параллельных прямых секущей ) 8. Верно ли , что перпендикулярные прямые пересекаются под прямым углом : да ( по определению перпендикулярных прямых ) . 9.Действительно ли угол , образованный касательной и радиусом , проведенным в точку касания , равен 90 " ? Да ( по определению касательной ) 10. Верно ли , что всякие смежные углы равны ? Нет ( будут равны лишь те смежные углы , каждый из которых равен 90°.
Рассмотрим получившиеся треугольники АВС и АДЕ: Угол А – общий. Углы АВС и АДЕ равны как соответственные углы образованные параллельными прямыми, пересеченными секущей Значит данные треугольники подобны по первому признаку подобия треугольников: Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны. Сторона АЕ треугольника АДЕ равна АС+СЕ: АЕ=8+4=12 см. Зная это, мы можем найти коэффициент подобия треугольников: k=АЕ/АС=12/8=1,5 Найдем стороны треугольника АДЕ: АД=АВ*k=10*1.5=15 см. ДЕ=ВС*k=4*1,5=6 см. ВД=АД-АБ=15-10=5 см. ответ: ВД=5 см. ДЕ=6 см.
Угол А – общий. Углы АВС и АДЕ равны как соответственные углы образованные параллельными прямыми, пересеченными секущей
Значит данные треугольники подобны по первому признаку подобия треугольников: Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны.
Сторона АЕ треугольника АДЕ равна АС+СЕ:
АЕ=8+4=12 см.
Зная это, мы можем найти коэффициент подобия треугольников: k=АЕ/АС=12/8=1,5
Найдем стороны треугольника АДЕ:
АД=АВ*k=10*1.5=15 см.
ДЕ=ВС*k=4*1,5=6 см.
ВД=АД-АБ=15-10=5 см.
ответ: ВД=5 см. ДЕ=6 см.