Дано: КА - перпендикуляр к плоскости ABC, KB перпендикулярен BC, AC=13,BC=5 угол альфа = 45
Доказать: треуголтник АВС - прямоугольный, (KAC)перпендикулярна (ABC)
Найти: KA
Доказательство:
а) КА - перпендикуляр к плоскости ABC
КВ - наклонная
АВ - проекция наклонной на плоскость
по теореме обратной ТТП АВ перпендикулярна СВ,тогда
угол АВС = 90 градусов, следовательно треугольник АВС - прямоугольный.
б) КАВ линейный угол двугранного угла ВКАС. т.к. КА - перпендикуляр к плоскости АВС угол КАВ = 90 градусов, следовательно, пересекающиеся плоскости КАС и АВС перпендикулярны
в)1. по т. пифагора АВ=
2. угол КАВ= 90, угол КВА=45, тогда угол АКВ=180-(90+45)=45
угол КВА=углу АКВ, следовательно треугольник АВК - равнобедренный, с равными сторонамми КА и ВА, тогда
КА=ВА=12 (см)
Решение: Боковые стороны равнобедренного треугольника равны:
AC=BC
По теореме Пифагора
AC=корень(CD^2+(AB\2)^2)
AC=корень(5^2+(12\2)^2)=корень(61) см
ВС=корень(61) см
Полуперитр треугольника АВС равен поллусумме сторон треугольника р=(АВ+ВС+АС)\2
р=(12+корень(61)+корень(61))\2=корень(61)+6 cм
Площадь треугольника равна половине произведения высоты на длину основания
S (ABC) =1\2*CD*AB
S=1\2*12*5=30 см^2
Радиус треугольника равен отношению площади треугольника к его полупериметру
r (ABC)= S\p
r=30\(корень(61)+6)=30\(61-36)*(корень(61)-6)=
=6\5*(корень(61)-6) cм.
ответ:6\5*(корень(61)-6) cм.
Дано: КА - перпендикуляр к плоскости ABC, KB перпендикулярен BC, AC=13,BC=5 угол альфа = 45
Доказать: треуголтник АВС - прямоугольный, (KAC)перпендикулярна (ABC)
Найти: KA
Доказательство:
а) КА - перпендикуляр к плоскости ABC
КВ - наклонная
АВ - проекция наклонной на плоскость
по теореме обратной ТТП АВ перпендикулярна СВ,тогда
угол АВС = 90 градусов, следовательно треугольник АВС - прямоугольный.
б) КАВ линейный угол двугранного угла ВКАС. т.к. КА - перпендикуляр к плоскости АВС угол КАВ = 90 градусов, следовательно, пересекающиеся плоскости КАС и АВС перпендикулярны
в)1. по т. пифагора АВ=
2. угол КАВ= 90, угол КВА=45, тогда угол АКВ=180-(90+45)=45
угол КВА=углу АКВ, следовательно треугольник АВК - равнобедренный, с равными сторонамми КА и ВА, тогда
КА=ВА=12 (см)
Решение: Боковые стороны равнобедренного треугольника равны:
AC=BC
По теореме Пифагора
AC=корень(CD^2+(AB\2)^2)
AC=корень(5^2+(12\2)^2)=корень(61) см
ВС=корень(61) см
Полуперитр треугольника АВС равен поллусумме сторон треугольника р=(АВ+ВС+АС)\2
р=(12+корень(61)+корень(61))\2=корень(61)+6 cм
Площадь треугольника равна половине произведения высоты на длину основания
S (ABC) =1\2*CD*AB
S=1\2*12*5=30 см^2
Радиус треугольника равен отношению площади треугольника к его полупериметру
r (ABC)= S\p
r=30\(корень(61)+6)=30\(61-36)*(корень(61)-6)=
=6\5*(корень(61)-6) cм.
ответ:6\5*(корень(61)-6) cм.