Нужно делить на СООТВЕТСТВУЮЩУЮ сторону треугольника. Если дано, что треугольники АВС и ОРТ, подобны, то вначале надо определить какие стороны являются соответствующими (и то же самое с углами: соответствующие углы у подобных треугольников равны). Как правило в учебниках, при записи подобных треугольников соответствие определяется по положению буквы в записи треугольника. Хотя, в новых учебниках это явно не сказано. Например, если сказано, что треугольники АВС и ОРТ подобны, то подразумевается, что угол А равен углу О, угол В равен Р, и С равен Т. И тогда стороне АВ соответствует сторона ОР, стороне ВС соответствует РТ и стороне АС соответствует OТ. Т.е. при такой записи, будет AB/OP=BC/PT=AC/OT. И в вашей задаче, если AB=8, то чтобы определить коэффициент подобия, надо знать длину именно ОР. И если сказано, что она 4, то да, треугольник ABC подобен треугольнику ОРТ с коэффициентом подобия 2.
можно было и больше поставить, задачка прикольная).. итак поехали:
стороны основания 5, 12 и 13 - это стороны прямоугольного треугольника
(25+144=169 теорема пифагора), а значит радиус вписаной окружности в основание равен р=(5+12-13)/2=2.. есть такая формула)
т.к. угол наклона у граней одинаковый, то и высоты у треугольников составляющих эти грани тоже будут одинаковы и будут составлять с высотой пирамиды и радиусом вписаной окружности в основание одинковые прямоугольные треугольники, и будут равны:
Н=корень( (4*корень(2))^2 + 2^2 ) = 6
площадь боковой поверхности пирамиды равна сумме площадей её граней, найдём каждую полупроизведением высот на их основания:
можно было и больше поставить, задачка прикольная).. итак поехали:
стороны основания 5, 12 и 13 - это стороны прямоугольного треугольника
(25+144=169 теорема пифагора), а значит радиус вписаной окружности в основание равен р=(5+12-13)/2=2.. есть такая формула)
т.к. угол наклона у граней одинаковый, то и высоты у треугольников составляющих эти грани тоже будут одинаковы и будут составлять с высотой пирамиды и радиусом вписаной окружности в основание одинковые прямоугольные треугольники, и будут равны:
Н=корень( (4*корень(2))^2 + 2^2 ) = 6
площадь боковой поверхности пирамиды равна сумме площадей её граней, найдём каждую полупроизведением высот на их основания:
S= 5*6/2+12*6/2+13*6/2 = 15+36+39 = 90