Если острый угол ромба 60 градусов ,то он своей малой диагональю разбивается на два равносторонних треугольника.Тогда его малая диагональ = 4 см.Диагонали ромба перпендикулярны и делятся в точке пересечения пополам.Рассмотрим прямоугольный треугольник АОВ, уголАОВ=90,АВ=4, ОВ=2 (как половина от малой диагонали ВД).По теореме Пифагора АО=square 12 (кв.корень из 12)=2*square3. Высота ОК этого треугольника, опущенная из точки О равна (АО*ОВ)/АВ (по свойству такой высоты),значит ОК=2*2*square3/4=square3. Так как стороны ромба равноудалены от точки М, то эта точка проектируется в центр окружности, вписанной в ромб.Радиусом этой окружности будет как раз высота ОК. Из прямоугольного треугольника МОК найдем ОМ.Длина перпендикуляра ОМ и есть расстояние от точки М до плоскости ромба. По теореме Пифагора ОМ=square(MK^2-OK^2)=square(25-3)=square22.
Поскольку сумма углов треугольника равна 180o, то можно считать, что данные углы противолежат вершине, из которой проведена данная медиана.
Пусть в треугольнике ABC известны углы $ \angle$B = $ \beta$ и $ \angle$C = $ \gamma$ и медиана AD = ma, проведённая к стороне BC. На продолжении отрезка AD за точку D возьмём точку A1 так, что DA1 = AD. В треугольнике AA1B известна сторона AA1 = 2ma и углы $ \angle$ABD = $ \beta$ и $ \angle$A1BD = $ \angle$ACB = $ \gamma$.
Из точки B отрезок AD виден под углом $ \beta$, а отрезок A1D — под углом $ \gamma$ Тогда вершина B есть пересечение двух дуг, построенных на AD и DA1, вмещющих углы $ \beta$ и $ \gamma$ соответственно и расположенных по одну сторону от прямой AA1. Отсюда выстекает следующее построение.
Строим середину D произвольного отрезка AA1 = 2ma. На отрезке AD как на хорде построим дугу окружности так, чтобы из каждой точки этой дуги отрезок AD был виден под данным углом $ \beta$. По ту же сторону от прямой AA1 строим на отрезке A1D как на хорде дугу окружности так, чтобы из каждой точки этой дуги отрезок A1D был виден под данным углом $ \gamma$. Пусть B — точка пересечения этих дуг, отличная от D. На продолжении медианы BA1 треугольника ABA1 отложим отрезок A1C, равный BA1. Тогда треугольник ABC — искомый.
Действительно, AD = $ {\frac{1}{2}}$AA1 = ma — данная медиана.
Поскольку сумма углов треугольника равна 180o, то можно считать, что данные углы противолежат вершине, из которой проведена данная медиана.
Пусть в треугольнике ABC известны углы $ \angle$B = $ \beta$ и $ \angle$C = $ \gamma$ и медиана AD = ma, проведённая к стороне BC. На продолжении отрезка AD за точку D возьмём точку A1 так, что DA1 = AD. В треугольнике AA1B известна сторона AA1 = 2ma и углы $ \angle$ABD = $ \beta$ и $ \angle$A1BD = $ \angle$ACB = $ \gamma$.
Из точки B отрезок AD виден под углом $ \beta$, а отрезок A1D — под углом $ \gamma$ Тогда вершина B есть пересечение двух дуг, построенных на AD и DA1, вмещющих углы $ \beta$ и $ \gamma$ соответственно и расположенных по одну сторону от прямой AA1. Отсюда выстекает следующее построение.
Строим середину D произвольного отрезка AA1 = 2ma. На отрезке AD как на хорде построим дугу окружности так, чтобы из каждой точки этой дуги отрезок AD был виден под данным углом $ \beta$. По ту же сторону от прямой AA1 строим на отрезке A1D как на хорде дугу окружности так, чтобы из каждой точки этой дуги отрезок A1D был виден под данным углом $ \gamma$. Пусть B — точка пересечения этих дуг, отличная от D. На продолжении медианы BA1 треугольника ABA1 отложим отрезок A1C, равный BA1. Тогда треугольник ABC — искомый.
Действительно, AD = $ {\frac{1}{2}}$AA1 = ma — данная медиана.
$\displaystyle \angle$ABC = $\displaystyle \angle$ABD = $\displaystyle \beta$, $\displaystyle \angle$ACB = $\displaystyle \angle$A1BC = $\displaystyle \angle$A1BD = $\displaystyle \gamma$
-- данные углы.