У МЕНЯ СОР ОТ 1.Даны линейная функция у=-1,7х-2
Задайте формулой линейную функцию,график которой:
А)паралелен графику данной функции
Б)пересекает график данной функции
В)паралелен графику данной функции И про У МЕНЯ СОР ОТ
1.Даны линейная функция у=-1,7х-2
Задайте формулой линейную функцию,график которой:
А)паралелен графику данной функции
Б)пересекает график данной функции
В)паралелен графику данной функции И проходит через начало кардинат.
2.при каких значениях а график функции у=ах-5 проходит через точку А(4;-4)
ЕСЛИ ВЫ ХОТИТЕ ЗАБРАТЬ ЗА ПРОСТО ТАК ЗНАЙТЕ ВАМ СДЕСЬ НЕ РАДЫходит через начало кардинат.
2.при каких значениях а график функции у=ах-5 проходит через точку А(4;-4)
ЕСЛИ ВЫ ХОТИТЕ ЗАБРАТЬ ЗА ПРОСТО ТАК ЗНАЙТЕ ВАМ СДЕСЬ НЕ РАДЫ
3. найдите область определения функции заданной формулой
2x
а) y=4x-6 b) y
x-5
[y=-2x
4. решите систему уравнений графическим
Пусть данная пирамида МАВС, МО - высота, точка О - центр треугольника; угол ОМА=45°
МО⊥плоскости основания, ∆ МОА - прямоугольный.
Сумма острых углов прямоугольного треугольника 90°, ⇒∠МАО=45°,
∆ АОМ - равнобедренный. АО=МО=12 см.
О - точка пересечения медиан ∆ АВС, и по свойству медианы АО:НО=2:1. Тогда высота основания АН=12:2•3=18 см
АС=АН:sin 60°=18:√3/2=36:√3•2=12√3
V=S•h:3
Формула площади правильного треугольника
36•3•√3 см²
V=36•3•√3•12:3=432√3 см³
* * *
Объём цилиндра равен произведению площади основания на высоту. Пусть основание вписанной призмы – ∆ АВС, АВ - гипотенуза, АС =m, угол АВС=f.
.Центр окружности, описанной вокруг прямоугольного треугольника, лежит в середине гипотенузы, а радиус равен её половине.
⇒ радиус основания цилиндра равен половине АВ.
АВ=m:sin f
R=0,5m:sin f
V=πr²•h
Пусть данная пирамида МАВС, МО - высота, точка О - центр треугольника; угол ОМА=45°
МО⊥плоскости основания, ∆ МОА - прямоугольный.
Сумма острых углов прямоугольного треугольника 90°, ⇒∠МАО=45°,
∆ АОМ - равнобедренный. АО=МО=12 см.
О - точка пересечения медиан ∆ АВС, и по свойству медианы АО:НО=2:1. Тогда высота основания АН=12:2•3=18 см
АС=АН:sin 60°=18:√3/2=36:√3•2=12√3
V=S•h:3
Формула площади правильного треугольника
36•3•√3 см²
V=36•3•√3•12:3=432√3 см³
* * *
Объём цилиндра равен произведению площади основания на высоту. Пусть основание вписанной призмы – ∆ АВС, АВ - гипотенуза, АС =m, угол АВС=f.
.Центр окружности, описанной вокруг прямоугольного треугольника, лежит в середине гипотенузы, а радиус равен её половине.
⇒ радиус основания цилиндра равен половине АВ.
АВ=m:sin f
R=0,5m:sin f
V=πr²•h