По формуле найдем координаты середины отрезка АС ...в данном случае точка Д: (x₁+x₂)/2;(y₁+y₂)/2) подставляем наши значения... ((-2+4)/2;(1+1)/2) (2/2;2/2) точка (1;1) - искомаяТогда медиане BD принадлежат обе точки (2;5) и (1;1). Уравнения прямой в стандартном виде: y=kx+b. Подставляем координаты обеих точек в уравнение получаем систему двух уравнений: 5=2k+b 1=k+b Теперь вычитаем из первого уравнения второе...получается 4=k подставляем k во второе уравнение 1=4+b следовательно b=1-4=-3. искомое уравнение: y=4x-3
(x₁+x₂)/2;(y₁+y₂)/2)
подставляем наши значения...
((-2+4)/2;(1+1)/2)
(2/2;2/2)
точка (1;1) - искомаяТогда медиане BD принадлежат обе точки (2;5) и (1;1). Уравнения прямой в стандартном виде: y=kx+b.
Подставляем координаты обеих точек в уравнение получаем систему двух уравнений:
5=2k+b
1=k+b
Теперь вычитаем из первого уравнения второе...получается 4=k подставляем k во второе уравнение 1=4+b
следовательно b=1-4=-3.
искомое уравнение: y=4x-3
Пусть даны две прямые
y=k _{1} xy=k
1
x ,y=k _{2} xy=k
2
x
Причем tg \alpha _{1}=k _{1}tgα
1
=k
1
tg \alpha _{2} =k _{2}tgα
2
=k
2
Найдем тангенс угла между этими прямыми:
tg( \alpha _{1} - \alpha _{2})= \frac{tg \alpha _{1}-tg \alpha _{2} }{1+tg \alpha _{1}tg \alpha _{2} }= \frac{k _{1}-k _{2} }{1+k _{1}k _{2} }tg(α
1
−α
2
)=
1+tgα
1
tgα
2
tgα
1
−tgα
2
=
1+k
1
k
2
k
1
−k
2
Прямые перпендикулярны, угол между ними 90⁰. Тангенс 90⁰ не существует, значит в последней дроби знаменатель равен 0,k _{1} k _{2} =-1k
1
k
2
=−1
это необходимое и достаточное условие перпендикулярности двух прямых
y=k _{1}xy=k
1
x ,y=k _{2} xy=k
2
x
Данная прямая может быть записана в виде y= \frac{5}{2} x+ \frac{7}{2}y=
2
5
x+
2
7
Угловой коэффициент равен 5/2,
Значит угловой коэффициент перпендикулярной ей прямой будет равен (-2/5).
ответ. y=- \frac{2}{5}xy=−
5
2
x
И все прямые ей параллельные, то есть
y=- \frac{2}{5}xy=−
5
2
x +С,
где С- любое действительное число
Объяснение:
решение не мое