Вариант 2.
1. В прямоугольнике одна сторона равна 10, другая сторона равна 12. Найдите площадь прямоугольника.
2. Сторона квадрата равна 10. Найдите его площадь.
3. Периметр квадрата равен 40. Найдите площадь квадрата
4. Найдите площадь параллелограмма, изображённого на рисунке.
Р=12+18+20=50см
ответ 50
опустим из вершины с на ад перпендикуляр: Δаве=Δдск⇒
АЕ=ДК=(17-5)/2=6
ответ 6
∠САД=∠АСВ=28° как внутренние накрестлежащие
в Δавс ∠ВАС=АСВ=28° как углы при основании равнобедренногоΔ
∠ВАД=∠СДА∠ВАС+∠АСВ=28+28=56° как углы при основании равнобедренной трапеции
∠АВС=∠ВСД=(360-2*56)/2=(360-112)/2=248/2=124°
ответ 59°,59°,124°,124°
пусть ВС =х, тогда АД =х+6 Сред линяя равна
МК=(х+х+6)/2, а по условию 7см
составим и решим уравнение
2х+6 / 2=7
2х+6=7*2
2х=14-6
х=8/2
х=4, значит вс=4, тогла ад=10
ΔАСД и ΔАСК подобны(т.к СК=1/2СД ∠С общий ∠СКО=∠СДА)⇒СО=1/2СА
т.е ОК - средняя линия ΔАСД⇒ ОК=1/2АД=1/2*10=5
МО=МК-ОК=7-5=2
ответ 5 и 2
ΔАВС и КВМ подобны(тк ∠В - общий, КВ=1/3АВ, МВ=1/3СВ)
⇒КМ=1/3АС=1/3*9=3см
ΔАВС и ОВN подобны(тк ∠В - общий,OВ=2/3АВ, NВ=2/3СВ)
⇒ON=2/3АС=2/3*9=6см
ответ 3 и 6
1.Тень от фонарного столба будет 4+8=12м, то есть в 12/4=3 раза больше, чем тень от дерева. Значит и высота столба будет в 3 раза больше дерева, то есть 3*3=9м.
2.Треугольник АВС - прямоугольный.
Докажем это с применением теоремы Пифагора:
41²=40²+9²
1681=1600+81
Значит, АС - гипотенуза.
В прямоугольном треугольнике центр окружности находится посередине гипотенузы, следовательно, радиус окружности равен 41:2=20,5 см.
ответ: 20,5 см
3.(картинка)
4.Опустим из вершины равнобедренного треугольника высоту, которая по известной теореме является медианой и биссектрисой. Тогда из получившихся прямоугольных треугольников найдем, что
sin(α/2) = (x/2)/b = x/(2b), где x - это длина искомого основания. Теперь выразим икс.
x = 2b*sin(α/2).
5.Опускаем перпендикуляр BD на сторону AC.
Проекция AB на AC - это AD= AB cos A; проекция BC на AC - это CD= BC cos C.(Картинка 2)Из теоремы синусов
Объяснение: