Проведем СЕ параллельно диагонали ВD. Треугольник АСЕ - прямоугольный, так как его стороны связаны соотношением 5:12:13, то есть с²=a²+b². Высота, опущенная на гипотенузу, связана с катетами прямоугольного треугольника соотношением: 1/a²+1/b²=1/h² или h²=a²*b²/(a²+b²) или h²=a²*b²/с². Или h=a*b/c. В нашем случае h=10*24/26=120/13. Тогда площадь трапеции равна S=(4+22)*120/2*13=120cм². ответ:S=120cм².
P.S. Заметим, что площадь трапеции S=(BC+AD)*h/2 равна площади прямоугольного треугольника АСЕ, так как высота у них одинакова, а основание (гипотенуза) треугольника равна сумме оснований трапеции: Sace=AE*h/2=(BC+AD)*h/2. Таким образом, можно было не находить высоту трапеции, а площадь ее найти как половину произведения диагоналей трапеции (катетов треугольника), то есть S=AC*BD/2=10*24/2=120см². Или найти площадь треугольника АСЕ (равную площади трапеции ABCD) по формуле Герона (для любителей корней): S=√[p(p-a)(p-b)(p-c)]=√(30*20*6*4)=120см².
Пусть точка А находится внутри окружности, те расстояние от точки А до центра окружности меньше радиуса окружности. и пусть через точку можно провести прямую так, чтобы она не являлась секущей, те имела с окружностью 1 или 0 точек пересечения. Но о точек перес прямая иметь не может тк имеется одна точка, принадлежащая прямой и находящаяся внутри окружности. Получаем 1 т перес. 1 т перес. с прямой это касательная, но касательная проходит через точку на окружности, следовательно тА лежит на окружности, следовательно расстояние от А до центра = радиусу, что противоречит условию. имеем 2 т пересечения.
Высота, опущенная на гипотенузу, связана с катетами прямоугольного
треугольника соотношением:
1/a²+1/b²=1/h² или h²=a²*b²/(a²+b²) или h²=a²*b²/с².
Или h=a*b/c.
В нашем случае h=10*24/26=120/13.
Тогда площадь трапеции равна S=(4+22)*120/2*13=120cм².
ответ:S=120cм².
P.S. Заметим, что площадь трапеции S=(BC+AD)*h/2 равна площади прямоугольного треугольника АСЕ, так как высота у них одинакова, а основание (гипотенуза) треугольника равна сумме оснований трапеции:
Sace=AE*h/2=(BC+AD)*h/2. Таким образом, можно было не находить высоту трапеции, а площадь ее найти как половину произведения диагоналей трапеции (катетов треугольника), то есть
S=AC*BD/2=10*24/2=120см².
Или найти площадь треугольника АСЕ (равную площади трапеции ABCD) по формуле Герона (для любителей корней):
S=√[p(p-a)(p-b)(p-c)]=√(30*20*6*4)=120см².
и пусть через точку можно провести прямую так, чтобы она не являлась секущей, те имела с окружностью 1 или 0 точек пересечения. Но о точек перес прямая иметь не может тк имеется одна точка, принадлежащая прямой и находящаяся внутри окружности. Получаем 1 т перес. 1 т перес. с прямой это касательная, но касательная проходит через точку на окружности, следовательно тА лежит на окружности, следовательно расстояние от А до центра = радиусу, что противоречит условию. имеем 2 т пересечения.