Знайдіть катети і другий гострий кут прямокутного трикутника , гіпотеза якого с = 20 см і а= 45 . Округліть довжини катетів з точністю до сотих будь - ласка дуже треба
Т.к. боковые ребра пирамиды равны, то и их проекции на основание тоже равны, следовательно, основание высоты пирамиды будет центр описанной около прямоугольного треугольника окружности)) известно: вписанный прямой угол опирается на диаметр, т.е. центр описанной около прямоугольного треугольника окружности --это середина гипотенузы. в основании египетский треугольник, т.е. гипотенуза =10 высота пирамиды --это высота боковой грани (треугольника со сторонами 13, 13, 10) h² = 13² - 5² = (13-5)(13+5) = 8*18 h = 4*3 = 12
Это же элементарно, нам дам прямоугольник, его диагональ, которая равна 25 см, и одна его сторона, которая равна 7, диагональ делит прямоугольник на 2 прямоугольных треугольника, которые ещё и равны между собой, рассмотрим 1 из них: его гипотенуза равна 25 (см), а 1 катет равен 7 (см), находим 2-й катет по теореме Пифагора: 25*25 (То есть 25 в квадрате) - 7*7 (7 в квадрате) = 625 - 49 = 576, а √576 = 24 То есть 24 (см) - это второй катет, и ещё одна сторона прямоугольника, ну и теперь путём несложным решений, (24+7)*2 = 62 (см) - это и есть периметр прямоугольника
известно: вписанный прямой угол опирается на диаметр, т.е. центр описанной около прямоугольного треугольника окружности --это середина гипотенузы.
в основании египетский треугольник, т.е. гипотенуза =10
высота пирамиды --это высота боковой грани (треугольника со сторонами 13, 13, 10)
h² = 13² - 5² = (13-5)(13+5) = 8*18
h = 4*3 = 12
его гипотенуза равна 25 (см), а 1 катет равен 7 (см), находим 2-й катет по теореме Пифагора: 25*25 (То есть 25 в квадрате) - 7*7 (7 в квадрате) = 625 - 49 = 576, а √576 = 24
То есть 24 (см) - это второй катет, и ещё одна сторона прямоугольника, ну и теперь путём несложным решений, (24+7)*2 = 62 (см) - это и есть периметр прямоугольника