В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
захар187
захар187
03.10.2021 16:15 •  Математика

Решите ооф y=lg(10x-x2)/x-2 ,логарифм только в числителе

Показать ответ
Ответ:
sashkoefymets
sashkoefymets
26.12.2023 13:41
Для начала разберемся с выражением в знаменателе. У нас есть выражение (x - 2) в знаменателе.

Поставим знаменатель равным нулю и найдем значения x, при которых это уравнение выполняется:
x - 2 = 0
x = 2

Теперь у нас есть точка разрыва функции, так как значение x = 2 делает знаменатель равным нулю. В эту точку логарифмическая функция не определена.

Теперь обратимся к числителю. Мы имеем выражение 10x - x^2. Найдем максимум или минимум этой функции. Для этого найдем ее производную и приравняем ее к нулю:
f(x) = 10x - x^2
f'(x) = 10 - 2x
10 - 2x = 0
2x = 10
x = 5

Таким образом, мы нашли, что функция достигает максимума или минимума, когда x = 5.

Теперь, зная точку разрыва (x = 2) и точку максимума или минимума (x = 5), мы можем разбить область определения функции на три интервала: (-∞, 2), (2, 5), (5, +∞).

Теперь рассмотрим каждый интервал по отдельности.

1. Для интервала (-∞, 2):

Поскольку x < 2, знаменатель (x - 2) будет отрицательным. Но для логарифма мы должны иметь положительный аргумент. Поэтому в этом интервале функция не определена.

2. Для интервала (2, 5):

В этом интервале знаменатель положителен, а значит, функция определена.

Теперь рассмотрим числитель отдельно: 10x - x^2.

Мы знаем, что значение x, при котором функция достигает максимума или минимума, равно 5. Подставим это значение в выражение:
10(5) - (5^2) = 50 - 25 = 25

Таким образом, на этом интервале числитель равен 25.

Теперь можно решить логарифмическую функцию:
y = lg((10x - x^2)/(x - 2))

На интервале (2, 5) и зная, что числитель равен 25, получим:
y = lg(25/(x - 2))

3. Для интервала (5, +∞):

В этом интервале знаменатель положителен, а значит, функция определена.

Аналогично предыдущему шагу, решим логарифмическую функцию:
y = lg((10x - x^2)/(x - 2))

На интервале (5, +∞) и зная, что числитель равен 25, получим:
y = lg(25/(x - 2))

Таким образом, решение данного выражения будет выглядеть следующим образом:

y = lg(25/(x - 2)) для интервалов (2, 5) и (5, +∞)
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота