1. Самое универсальное правило состоит в том, что всякие такие тригонометрические уравнения приводятся к виду (на примере sin, можно брать любую из функций, предложенных в задании): sin(ax+-b)=c. 2. После первого шага в зависимости от того, что за функция (sin, cos, tg, ctg) слева оставляется один аргумент, то есть ax+-b 3. После второго шага путём домножений/делений, сложений/вычитаний оставляется только Х. 4. Из всех полученных решений консолидируется финальное (например, убираются дублирующие корни или проверка на ОДЗ). Примеры во вложении, описанные шаги помечены точками (но не во всех присутствуют все 4).
ответ:
более быстрый процессор выполнит работу за 55 мин, а более медленный – за 66 мин, что соответствует 1 ч 6 мин.
объяснение:
пусть время, нужное первому процессору на выполнение работы = х мин.
скорость процессора составит:
1 / х работ/мин.
время, необходимое второму процессору, чтобы исполнить работу:
х – 11 мин.
тогда скорость второго процессора составит:
1 / (х – 11) работ/мин.
при работе вместе скорость процессоров складывается, тогда:
(1 / х) + (1 / (х – 11)) = 1 / 30 работ/мин.
((х – 11) + х) / (х * (х – 11)) = 1/30;
30 * ((х – 11) + х) = х * (х – 11);
30 * х – 330 + 30 * х = х2 – 11 * х;
30 * х – 330 + 30 * х – х2 + 11 * х = 0;
71 * х – 330 – х2= 0;
уравнение к виду a * x2 + b *x + c = 0, где а = -1; b = 71; с = -330.
такое уравнение имеет 2 решения:
х1 = (- b - √‾(b2 – 4 * a * c)) / (2 * a) = (-71 – √‾((71)2 – 4 *330 )) / (- 2 * 1) = (-71 – √‾(5 041 – 1 320)) / -2 = (-71 – √‾3 721) / -2 = (-71 – 61) / -2 = - 132 / -2 = 66;
х2 = (- b + √‾(b2 – 4 * a * c)) / (2 * a) = (-71 + √‾((71)2 – 4 *330 )) / (- 2 * 1) = (-71 + √‾(5 041 – 1 320)) / -2 = (-71 + √‾3 721) / -2 = (-71 + 61) / -2 = - 10 / -2 = 5;
таким образом получили 2 решения.
х1 = 66;
х2 = 5;
проверим, выполняется ли при этих значениях первоначальное уравнение:
х1 = 66;
1/66 + 1/55 = (5 + 6) / (5 * 6 * 11) = 11 / (5 * 6 * 11) = 1/30.
х2 = 5;
1/5 + 1/(5 - 11) = 1/5 – 1/6 = 6/30 – 5/30 = 1/30.
уравнение и со вторым корнем выполняется, но скорость второго процессора в этом случае получается отрицательной: -1/6.
значит остается один корень:
х = 66 мин;
х – 11 = 66 – 11 = 55 мин.
2. После первого шага в зависимости от того, что за функция (sin, cos, tg, ctg) слева оставляется один аргумент, то есть ax+-b
3. После второго шага путём домножений/делений, сложений/вычитаний оставляется только Х.
4. Из всех полученных решений консолидируется финальное (например, убираются дублирующие корни или проверка на ОДЗ).
Примеры во вложении, описанные шаги помечены точками (но не во всех присутствуют все 4).